
Narrow linewidth measurement
with a Fabry-Pérot interferometer

using a length modulation technique

Master thesis

submitted to
Department of Technological Physics

Institute of Nanostructure Technologies and Analytics
Kassel University

by
Frederik A. Franz

Student number: 31209346
M.Sc. Physics

born in Lippstadt, Germany

Supervision by:
Prof. Dr. J. P. Reithmaier

Prof. Dr. H. Hillmer
Dr. M. Schubert

Kassel, December 2018



Contents
1 Introduction 2

2 Theory 4
2.1 Linewidth of single-frequency lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Optical parametric oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Gaussian beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Fabry-Pérot interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Acousto-optic modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Delayed self-heterodyne interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Linewidth measurement with a Fabry-Pérot interferometer using a length modulation
technique 27
3.1 Experimental setup and performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Cavity characterisation measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Cavity length modulation measurement . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3 The complete setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Data acquisition and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Cavity characterisation measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Cavity length modulation measurement . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.1 Cavity characterisation measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.2 Cavity length modulation measurement . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Conclusion and outlook 66

5 Appendix 67
5.1 Numerical calculation of the magnitude of the fringe . . . . . . . . . . . . . . . . . . . . . 67



1 INTRODUCTION

1 Introduction
Narrow linewidth coherent light sources are necessary for fibre-optic sensors, spectroscopy, LIDAR, in
coherent optical fibre communications and many more applications [1]. But how is the linewidth of a
laser experimentally quantified? Indeed, this may be difficult.

In this thesis, the tested laser1 has an estimated linewidth of a few 100 kHz and an output spectrum from
900nm to 1300nm [2]. This corresponds to a ratio of laser frequency to linewidth in the order of 109. To
determine a suitable measurement technique, an overview of existing techniques is given first.

The difficulty of measuring linewidths of lasers fundamentally depends on the linewidth itself and there-
fore on the necessary resolution. Large linewidths (i.e. > 10GHz) are easily measurable with traditional
techniques of optical spectrum analysis such as the use of diffraction gratings. Moreover, it is possible
to convert frequency fluctuations into intensity fluctuations by using an optical frequency discriminator
(i.e. a high-finesse reference cavity or an unbalanced interferometer), but in this case, the resolution is
limited, too and confined to a few MHz [1].
To measure linewidths of cw-lasers in the sub-MHz region, heterodyne techniques are often used. Here,
a beat note between the tested laser and a second laser with narrow linewidth is recorded with a photo
diode to transform the frequencies from the optical into the radio regime, which can be measured with
standard electronics. A disadvantage of this technique is the need of a second laser that deviates much
less than 1 nm from the tested laser’s wavelength. To avoid this, delayed self-heterodyne interferometry
can be used. Therefore, the light of the tested laser is delayed by its coherence length with an optical
fibre of several kilometres length and frequency shifted by an acousto-optic modulator superimposed
again [1]. The downside of this technique is the fact that a narrow linewidth involves a high coherence
length. A delay of about 25 km is necessary to measure linewidths in the domain of a few tens of kHz.
This is not a problem in case of laser wavelengths where fibres only exhibit low attenuation, i.e. for the
Telecom wavelengths 1.3µm and 1.55µm, but there is no optical fibre that can be used when it comes
to shorter wavelengths [1]. Thus, in this case2, delayed self-heterodyne interferometry is only usable for
the wavelengths close to 1300 nm.

Therefore, in this thesis a technique with the accuracy of delayed self-heterodyne interferometry but with
wavelength compatibility down to 900nm is needed.
The beat of the laser with a frequency comb, which is basically an extremely high resolution ruler in the
frequency domain, would be a suitable technique of linewidth measurement. As the equipment is very
expensive, another technique is to be developed [3][4][5].

Hence, in this thesis a high resolution Fabry-Pérot interferometer is built to measure the linewidth with
a cavity length modulation technique. To realise that, one of the two cavity mirrors is mounted on a piezo
electric transducer and swept in a way that the cavity transmission fringe periodically overlaps with the
line shape of the tested laser in the frequency domain. The transmitted intensity is then analysed to
determine the linewidth [6]. Besides, two other experiments are performed in order to characterize the
cavity3. This is necessary for the analysis of the data from the linewidth measurement with the cavity
length modulation technique.

In addition, an already existing delayed self-heterodyne setup is used to measure the linewidth at wave-
lengths at 1300 nm and below to compare the results with those acquired by the cavity length modulation
technique. Therefore, the delayed self-heterodyne setup serves as a reference to check the built Fabry-
Pérot interferometer.

This thesis is structured as follows:

In chapter (2) the theoretical fundamentals necessary for this thesis are discussed, starting in chapter
(2.1) with the origin of a finite linewidth and the characteristics of a related lineshape.

1As tested laser, the Hübner C-WAVE is used.
2How far towards shorter wavelengths this technique can be used depends on the optical power of the tested laser, the

attenuation in the fibre and the sensitivity of the used photo detector.
3During this thesis the terms Fabry-Pérot interferometer and cavity are used synonymously.

2



1 INTRODUCTION

Moreover, in chapter (2.2) the principles of the tested laser, an optical parametric oscillator, are present-
ed. This is necessary for a theoretical investigation of the tested laser’s expected linewidth, later.

In addition, in chapter (2.3) Gaussian beams that describe the mode structure of a cavity are discussed,
since knowledge about Gaussian beams is of fundamental importance in order to design a stable Fabry-
Pérot interferometer. Besides, if a laser beam is coupled into a cavity, the mode structures of incident
beam and interferometer have to match (mode-matching). In an experiment, this is only realisable for
known mode structures.

In chapter (2.4) the transmission profile, the (longitudinal and transverse) mode structure, the condition
for a stable operation and expectable resolution of Fabry-Pérot interferometers is presented. Moreover,
the design conditions to build up a Fabry-Pérot interferometer are given. Besides, the cavity length mod-
ulation technique using a Fabry-Pérot interferometer is introduced and the realisation of mode-matching
is discussed.

Afterwards, since an acousto-optic modulator is of fundamental importance and used in several experi-
ments, its theory is presented in chapter (2.5). Besides, an acousto-optic modulator double-pass config-
uration that solves the issue with a frequency dependent pointing of the acousto-optic modulator’s first
diffraction order is introduced.

In chapter (2.6), the principles of delayed self-heterodyne interferometry used as linewidth measurement
technique (in addition to the cavity length modulation technique) are given.

Then, in chapters (3.1.1) and (3.1.2) the experimental setup and the performance of the cavity charac-
terisation measurements and the linewidth measurement (using the cavity length modulation technique)
are described respectively. Thereby, the results of the cavity characterisation experiments are necessary
for the analysis of the cavity length modulation technique’s data.

Subsequently, in chapters (3.2.1) and (3.2.2) the experimentally obtained data is analysed and interpreted.

Finally, the experimental results are summarised in chapters (3.3.1), (3.3.2) and (4) and an outlook for
future work is given.
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2 Theory
2.1 Linewidth of single-frequency lasers
The linewidth, even of a continuous-wave single-mode laser, can never be made perfectly monochromatic.
The fundamental reason for this is spontaneous emission.

In figure (1) the fundamen-
tal lasing transitions absorp-
tion, stimulated emission and
spontaneous emission in a two
level system are shown, where-
by absorption is not of interest
in this case.
Since stimulated emission adds
coherently, with a defined phase
relationship to the lasing mode,
the linewidth is not increased
due to this process. But spon-
taneous emission adds incoher-
ently, without a defined phase
relationship to the cavity field
and has an inherent Lorentzian
distribution of frequencies that
yield a finite linewidth. There-
fore, spontaneous emission sets
a fundamentally lower limit on
the laser linewidth [7].
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Figure 1: The fundamental lasing transitions absorption, stimulated
emission and spontaneous emission. E1 and E2 are the energies of
lower and upper states, respectively, ~ is the reduced Planck constant
and ω0 the radiation angular frequency. Adapted from [7].

The spontaneous emission linewidth ∆ν0 was calculated by Schawlow and Townes and is given by [7]:

∆ν0 = π~ω0(∆νc)2

Pout
, (1)

where ω0 is the laser (angular-) frequency and ∆νc the bandwidth of the used cavity. The dependence
on the output power Pout takes into account that with increasing intra-cavity power stimulated emission
becomes more and more the dominating process related to spontaneous emission [7].
In case of a laser wavelength of λ0 = 800nm, ∆νc = 10MHz and Pout = 100mW a linewidth of ∆ν0 =
0.8mHz results.
This limit is typically not reached, since there are various broadening mechanisms which are discussed
later on [8]. First, a definition of the linewidth is given. In figure (2) a Lorentzian shaped power spectral
density as an example of a potential laser lineshape is shown. Now, the linewidth is some certain width
of the distribution. Typically, the full-width at half-maximum (FWHM) is used as shown in the figure
indicated by the blue line [1].
Beside the shown Lorentzian lineshape other lineshapes are possible, e.g. described by a Gaussian or
a Voigt profile (=convolution of Lorentzian and Gaussian). Note, that for the same linewidth different
spectral densities can occur, as shown in figure (3).
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Figure 2: Definition of the laser linewidth. As
linewidth a certain width of the power spec-
tral density distribution is taken. Here, as most
common, it is the full-width at half-maximum
(FWHM).
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Figure 3: Comparison of Lorentzian and Gaussian
lineshape. The FWHM linewidth is indicated by
the two red lines and is equal for both lineshapes
although the individual shapes differ considerably
from each other.

The linewidth of a laser is typically increased by various broadening mechanisms. According to chapter
(2.4), the absolute frequencies and the widths of the transmission fringes of the used cavity depend fun-
damentally on the cavity length. Since the cavity essentially determines the frequency of emitted laser
radiation, any mechanical and temperature induced noise that influences the cavity length leads to a raise
of noise in the laser frequency and therefore yields an increased linewidth [9].

Moreover, in a gas laser where atoms collide with other atoms, ions, free electrons and the walls of the
gas container, respectively, the coherent interaction of the lasing mode and the gas atoms of the active
medium during a process of absorption or stimulated emission, is interrupted. This leads to phase shifts
and therefore to an increase in linewidth. Since every atom of the ensemble is affected in the same way,
the linewidth is homogeneously broadened resulting in a Lorentzian lineshape. Thereby, the process of
spectral broadening by means of collisions is termed as collisional broadening [10].
Collisional broadening can also be found in solid-state lasers 4. Here collisions are caused due to the
interaction of the atom with the lattice phonons [10].

Another broadening mechanism arises from atomic motion and is referred to as Doppler broadening. Be-
cause of the statistical motion of the atoms of the gain medium relative to the propagation direction of
the electromagnetic wave, the frequency of the electromagnetic wave (that interacts with the atoms) as
seen in the rest frame of an atom is shifted as compared to the frequency of the wave in the laboratory
reference frame according to the Doppler shift. From the point of view of atom-radiation interaction, this
shift is equivalent to a change of the resonance frequency of the atom. Moreover, taking into account the
Maxwell-Boltzmann distribution of velocities in a gas, it can be shown that the distribution of transition
frequencies of the ensemble is given again by a Gaussian function and therefore leading to a Gaussian
lineshape. Since the individual atoms are affected in a different way, inhomogeneous broadening occurs
with its typical Gaussian lineshape [10].

There are several more broadening mechanisms depending on the type of laser. More information about
this topic can be found, e.g. in [10], [7] or [11].

The lineshape due to homogeneous broadening is always Lorentzian and the lineshape by reason of inho-
mogeneous broadening is always Gaussian, respectively. If two mechanisms contribute to line broadening,
the overall lineshape is given by the convolution of the corresponding lineshape functions. It can be
shown that thereby the convolution of a Lorentzian line of full-width at half-maximum ∆νL1 with an-
other Lorentzian line of width ∆νL2 again gives a Lorentzian line of width ∆νL1 + ∆νL2. Besides, the
convolution of two Gaussian lines of widths ∆νG1 and ∆νG2 also results in a Gaussian line, but this time
with a width of

√
∆ν2

G1 + ∆ν2
G2. Therefore, for any combination of broadening mechanisms, it is usually

4The pump laser of the optical parametric oscillator, that is the tested laser, is a solid-state laser, too. Therefore, its
power spectral density and lineshape, respectively, should be given by a Lorentzian function.
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possible to reduce the problem to a convolution of a single Lorentzian with a single Gaussian lineshape.
This convolution is known as Voigt profile. Sometimes one mechanism predominates. Then it is valid, to
consider a pure Lorentzian or Gaussian line [7].

In the beginning, as fundamental reason, why there is a finite linewidth, at all, spontaneous emission
was mentioned, since the finite linewidth occurs due to the spontaneous transition of an electron from a
higher energy level to a lower one. Moreover, the type of the tested laser is an optical parametric oscillator
and is described in chapter (2.2) in more detail. Indeed, optical parametric oscillators are not based on
transitions between energy levels building the lasing transition as it is the case in all gas-, liquid- or
solid-state lasers. Instead, a parametric process is used to amplify the so called signal and idler beams
occuring in this process by means of the conversion of a pump laser. The pump laser of the used optical
parametric oscillator is a diode-pumped solid-state laser and is therefore affected by the considerations
of a finite linewidth due to spontaneous emission. Thus, the pump laser used for this process has a
finite linewidth and this in return leads to a finite linewidth of the signal and idler beams of the optical
parametric oscillator.

2.2 Optical parametric oscillator
An optical parametric oscillator (OPO) is very similar to a laser, since it emits coherent radiation. More-
over, it makes use of a laser resonator, but in difference to a laser it relies on optical gain from parametric
amplification in a non-linear crystal rather than from stimulated emission. Besides, an OPO exhibits a
threshold for the pump power, below which there is only parametric fluorescence [5].
In the following, an overview over a certain type of OPO, a singly-resonant optical parametric oscillator
SR-OPO, that is the type of the laser used for the experiments, is briefly discussed. More information
about OPO’s in general can be found in [12], [13], [14], [5], [10] and [7] and their respective references.

As already mentioned, the OPO process takes place in a non-linear crystal, where the second order
susceptibility χ(2) is used for wave-mixing between three waves, the pump wave incident on the crystal
at (angular-) frequency ωp and the during the OPO process also appearing so called signal (frequency
ωs) and idler (frequency ωi) beams [5]. Since the pump wave is converted into the signal and idler waves,
which exhibit longer wavelengths, this process is an optical down conversion process [5]. Thereby, the
frequencies of pump, signal and idler satisfy the relation [11]:

ωp = ωs + ωi , (2)

where the signal and idler beams are initiated by parametric fluorescence and enhanced during the OPO
process during propagation through the non-linear crystal while the pump is depleted to amplify the
signal and idler beams [5].
Equation (2) allows any combination of frequencies ωs and ωi and represents energy conservation, that
can be seen by multiplying the equation by the reduced Planck constant ~. However, this is restricted by
momentum conservation, because on the quantum level each pump photon is destructed to generate a
signal and an idler photon. Assuming all three waves to propagate in the same direction, this condition
reads [5]:

∆k = kp − ks − ki
!= 0 , (3)

with the wave vectors of pump kp, signal ks and idler ki, respectively. ∆k is the phase-mismatch and
can be forced to be zero if some phase-matching technique, e.g. quasi-phase-matching (QPM), is used.
In this case, as non-linear crystal a periodically poled ferroelectric crystal (e.g. LiNbO3) is used, where
the sign of the second-order susceptibility coefficient χ(2), that couples the involved waves, is alternated
periodically with the modulation period ΛQPM (→ periodic poling = periodic change of the χ(2) sign)
[5]. With an integer m and the phase-mismatch in case of QPM ∆kQPM equation (3) transforms to:

∆kQPM = kp − ks − ki −m
2π

ΛQPM
= 0 . (4)

This implies, that an additional crystal momentum km = m 2π
ΛQPM

is utilized to fulfill equation (3) [5].
In addition, the involved pump, signal and idler waves have to propagate in phase to each other as already
given by equation (3). If the phase-mismatch ∆k does not equal zero, the distance Lcoh after that the
relative phase between the interacting waves changes by π is constituted by:

Lcoh = π

∆k . (5)
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After the distance Lcoh the generated waves (signal and idler) are back-converted into the pump beam,
thus, Lcoh is called the coherence length of the OPO process. This is avoided by the already mentioned
periodic change of the sign of the second-order susceptibility χ(2) with periodicity ΛQPM = 2Lcoh (m = 1).
Therefore, at the point where the conversion with wrong direction would start, the change of sign of χ(2)

causes an enduring conversion in the desired direction [5].
Using the definition of the wave vector kj = n(T, ωj)ωjc0

with the refractive index n(T, ωj), depending on
the temperature T and the frequency of the respective wave (j = p, s, i) and the speed of light in vacuum
c0, equation (4) can be transformed to:

n(T, ωp)ωp
c0
− n(T, ωs)

ωs
c0
− n(T, ωi)

ωi
c0
−m 2π

ΛQPM
= 0 , (6)

where n(T, ωj) can be calculated from a suited experimentally determined Sellmeier equation [12]. As
a result, the phase-matching condition can be fulfilled by choosing an appropriate temperature T and
modulation period ΛQPM [12].

In addition, the gain of the signal and the idler wave, respectively, fundamentally depends on the phase-
mismatch ∆kQPM and is highest if ∆kQPM = 0 [15].

Considering a small gain, as it is the case in most sit-
uations of practical interest, the net fractional gain in
signal intensity Gs under the additional conditions of
no pump depletion, zero input idler field and nonzero
input signal field is given by:

Gs = Is(z = l)
Is(z = 0)−1 = Γ2l2

[
sin(∆kQPMl/2)

∆kQPMl/2

]2
, (7)

with z as propagation direction, Γ as gain fac-
tor and Is(z = 0) as intensity of the signal beam
at the input facet of the non-linear crystal and
Is(z = l) as signal intensity after the propaga-
tion length l, respectively [12]. Besides, the part[
sin(∆kQPMl/2)

∆kQPMl/2

]2
= sinc2

(
∆kQPMl

2

)
of equation (7)

is plotted in figure (4). In addition, the full-width at
half-maximum of the gain curve FWHM is shown,
where the half-maximum is reached if the product of
phase-mismatch and propagation length ∆kl equals
±0.44π.

Figure 4: According to equation (7), the
sinc-funtion part of the net fractional gain of
signal intensity Gs is shown. ∆k denotes the
phase-mismatch in case of QPM ∆kQPM. From
[10].

As already mentioned in the beginning of this section, as tested laser a singly-resonant OPO is used. For
that, consider figure (5) showing the basic layout of such an OPO. It depicts a ring cavity containing the
non-linear crystal (NL Crystal) of length Lc necessary for the OPO-process. The cavity consists of the
four mirrors M1, M2, M3 and M4.
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Now, in a singly-resonant OPO only one of the
signal and idler waves is resonant. Without loss
of generality, the signal beam is considered to
be resonant here. Then the four mirrors are
completely transparent for the pump and idler
wave. Besides, three of the mirrors are highly
reflective for the signal beam and one mirror
(here the M2-mirror) has a slightly reduced re-
flectivity to couple a small fraction of the signal
wave out.
During operation the pump beam passes the
non-linear crystal and is partially converted in-
to the signal and idler beams by means of the
non-linear interaction. Thereby, the frequency
of the idler is determined by energy and mo-
mentum conservation (QPM) in combination
with the given wavelength of the pump laser
and the resonance condition of the cavity.

pump (ω
p
) NL Crystal

M1 M2

M3M4

L
c

Resonant signal (ω
s
) or idler (ω

i
)

pump (ω
p
)

signal (ω
s
)

idler (ω
i
)

Figure 5: Layout of an singly-resonant optical para-
metric oscillator SR-OPO. The four mirrors M1, M2,
M3 and M4 realise a ring cavity containing the non-
linear crystal (NL Crystal). In the singly-resonant
case only the signal or the idler beam is resonant.
Adapted from [5].

2.3 Gaussian beams
An important element of a laser is always the cavity, because it determines the longitudinal and transverse
mode structure of the emitted laser radiation and is indicated by the indices m, n (transverse modes) and
q (longitudinal mode)5 [10]. The mode structure and electrical field distribution respectively, fundamen-
tally depend on the mirror shapes, whether they are flat, spherical or something else and the distance of
the cavity mirrors, since these properties of the cavity decide upon which kind of modes lead to standing
waves in the resonator, that is necessary for a stable cavity, where the beam reproduces itself after one
round trip [10].
Vice versa, the mode structure given by a certain cavity is exactly the mode structure that is not sup-
pressed if light of this mode structure is coupled in. I.e. a laser beam incident on a cavity operating
in TEMq00 should match the TEMq00 mode of the cavity if a high transmission is desired. That is an
important point in an experiment if light is coupled into a cavity based interferometer, e.g. a Fabry-Pérot
interferometer.
Thereby, the mode structure generally found in cavities is strongly connected with Gaussian beams, since
these are eigensolutions of the commonly used cavity structures describing differential equations.
For various reasons most cavities are built to support Gaussian beam operation, especially the funda-
mental mode. Thus, this mode is discussed in more detail [10].

The electric field of a monochromatic and uniformly polarized light wave at a small angle along the
z-direction of a cartesian system of coordinates can be described as:

E(x, y, z, t) = E0u(x, y, z)ei(ω0t−k0z) , (8)

with the light frequency ω0, the wavenumber k0 = 2π
λ0
, the optical wavelength λ0 and the electrical field

amplitude E0 [10]. Moreover, u(x, y, z) is the complex field envelope and given by:

u(x, y, z) = ωbw
ω(z)e

− x
2+y2

ω2(z) e−ik0
x2+y2

2Rbeam(z) eiϕG(z) , (9)

where ωbw is the lowest beam radius the laser beam shows overall. Therefore, it is called the beam waist
and located at the position z = 0 by convention. In addition, ω(z) plotted in figure (6) is the beam radius
for that the electrical field amplitude has decayed by the factor 1

e with respect to the maximum value at
the z-axis, which leads a decay in intensity down to 1

e2 . The beam radius ω(z) is given by:

ω(z) = ωbw

√
1 +

(
z

zR

)2
, (10)

5Of course, light is a transverse wave. Here, longitudinal modes refer to certain modes along the optical axis of the cavity
represented by their number of nodes in this direction. In addition, the transverse modes refer to the number of nodes
perpendicular to the optical axis.
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with the Rayleigh length zR that is the propagation length after that the beam radius has increased by
factor of

√
2 and the area by 2, respectively. In equation (9) Rbeam(z) is the radius of the curvature of

the spherical constant-phase wave fronts at the z-axis:

Rbeam(z) = z

[
1 +

(zR
z

)2
]
. (11)

It shows plane-wave like behaviour with flat wave fronts at beam waist (Rbeam(z → 0) → ∞), curved
wave fronts everywhere else and is plotted in figure (7). In addition, ϕG(z) is the Gouy-phase, that
is an additional phase the Gaussian beam accumulates by propagating along z-axis with respect to a
plane-wave [10].

ϕG(z) = arctan
(
z

zR

)
(12)

Moreover, using equation (10) and

zR = πω2
bw
λ0

(13)

the (half-angle) beam divergence can be defined [10]:

Θd = lim
z→∞

ω(z)
z

= λ0

πωbw
. (14)

Thus, the function f(z) = Θdz is the aymptote of the beam radius ω(z) for high values of z.
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Figure 6: Ratio of beam radius ω(z) to the beam
waist radius ωbw depending on the propagation
length z normalised to the Rayleigh length zR.
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Figure 7: Ratio of radius of curvature Rbeam(z)
of the constant-phase wave fronts to the
Rayleigh length zR depending on the propaga-
tion length z normalised to the Rayleigh length
zR.

A Gaussian beam, represented by its beam radius, beam divergence asymptotes and constant-phase wave
fronts, is depicted in figure (8).
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Figure 8: Beam radius, beam divergence asymtotes and constant-phase wave fronts of a Gaussian beam.

Thereby, the representation of the fundamental mode of a Gaussian beam, given by the equations (8),
(9), (10), (11) and (12), can be derived by solving the paraxial Helmholtz equation [10]:

∂2u(x, y, z)
∂x2 + ∂2u(x, y, z)

∂y2 − 2ik0
∂u(x, y, z)

∂z
= 0 . (15)

A general solution for rectangular boundary conditions, as up to now considered, can be written as in
equation (8) stated, but with the mode dependent complex field envelope um,n(x, y, z):

um,n(x, y, z) = ωbw
ω(z)Hm

(√
2x

ω(z)

)
Hn

(√
2y

ω(z)

)
e−

x2+y2

ω2(z) e−ik0
x2+y2

2Rbeam(z) ei(1+m+n)ϕG(z) , (16)

where H(X)i are Hermite polynomials of order i. Therefore, setting m = n = 0 would result in the by
equation (9) described envelope of the TEM00 mode. An overview over these so called Hermite-Gaussian
modes is shown in figure (9). Moreover, the associated intensity distributions are depicted in figure (10).
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Figure 9: Overview of the electric field dis-
tribution of Hermite-Gaussian TEMmn modes.
Thereby, positive values of the electric field are
coloured red, negative ones blue and an electric
field of zero is indicated by a green colour. With
increase of the positive values, they are deeper
red and with decrease of negative values of the
electric field, they are deeper blue coloured, re-
spectively. From [16].

Figure 10: Overview of the intensity distri-
bution of Hermite-Gaussian TEMmn modes.
Thereby, the intensity increases from light blue
to deep red. In addition, the individual modes
have the same beam waist ωbw and are nor-
malised to have the same power. From [16].

As already mentioned, solving the paraxial
Helmholtz equation for a rectangular symme-
try, i.e. for rectangular, spherical mirrors in a cavity
yields Hermite-Gaussian modes. Moreover, choosing
a different kind of boundary conditions, would lead
to a different set of eigenfunctions. I.e. solving the
paraxial wave equation in case of a radial symmetry
if circular and spherical mirrors are used, yields
Gauss-Laguerre modes, whose intensity distributions
are shown in figure (11).
In general any arbitrary field distribution
Earb(x, y, z, t) can be written as linear combi-
nation of Hermite-Gaussian modes, since they are
a complete set of eigensolutions of equation (15)
[16][10].

Earb(x, y, z, t) =
∑
m,n

(
E0um,n(x, y, z)ei(ω0t−k0z)

)
(17)

Figure 11: Overview of the intensity distribu-
tion of Gauss-Laguerre LGmn modes. Thereby,
the intensity increases from light blue to deep
red. In addition, the individual modes have the
same beam waist ωbw and are normalized to
have the same power. From [16].

Moreover, with respect to the fundamental mode higher order modes do not focus as tightly, are more
divergent and take power away from the 00-mode [16].

In addition, it should be outlined that just like the cavity mode structure determines the mode structure
of emitted laser radiation, it also plays an important role if a Gaussian beam with any kind of mode
structure shall be coupled into the cavity. Then, the fraction of light coupled in depends fundamentally
on the fact whether the modes match or not. This is called mode-matching and typically realised by
some suitable optics that transforms the beam that way the beam matches a mode in the cavity. This is
discussed further on in chapter (2.4).

In an experiment from the observation of these modes it can be obtained if the cavity is well aligned and
if suitable mode-matching optics is used.
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2.4 Fabry-Pérot interferometer
A Fabry-Pérot interferometer is the assembly of two opposite mirrors with an alterable spacing between
them, i.e. an adjustable optical cavity. To understand the principle, consider the following picture of an
optical cavity that has been filled with light. In a classical approach the light travels forth and back
along the optical path. At each round-trip a fraction of the stored light is lost because of transmission,
scattering, diffraction and absorption at the cavity mirrors. Following this simplified picture, the light
will decay in steps determined by the fractional round-trip losses separated in time by the round-trip
time. Assuming high mirror reflectivities in addition, the steps are small. The loss is proportional to the
stored light which yields an exponential decay. Although here a classical, simplified picture is used, this
is exactly the outcome as shown in the following [17].

Now, a mathematically treatment is done to calculate the Fabry-Pérot interferometer describing quanti-
ties.
First, the nth cavity mirror itself is described by the intensity reflection Rn, loss Sn (non recoverable
energy losses from scattering, diffraction and absorption) and transmission Tn, respectively. According to
energy conservation, that leads to the relation:

Rn + Sn + Tn = 1 . (18)

The total losses of the nth cavity mirror Ln are given by Ln = Sn + Tn.

circulating light

E
i
(t) E

o
(t)

Mirror 1 Mirror 2

Figure 12: Optical cavity filled with light. Ei(t) and Eo(t) are the input and the output electrical field,
respectively. Since for this picture a resonant cavity is assumed, no light is reflected back.

Lets now consider light Ei(t) = Ei exp(−iω0t) at angular frequency ω0 incident on one mirror [illustrated
in figure (12)], which yields the output field Eo(t) to be [17]:

Eo(t) = Eoe−iω0t = Eie−iω0t

[
Cmnq

√
TiTo

1
1−

√
Rpeiδ

]
. (19)

Rp is the product of the mirror reflectivities of input and output mirrors (Rp = RiRo) and Cmnq is a
mode-matching coefficient (m and n refer to the transversal Gaussian modes and q to the longitudinal
one). Eo is the amplitude of the output electrical field and Ei of the input field, respectively. In addition,
the phase factor δ is the accumulated optical phase shift of one round-trip. Using additional phases ϕm
and ϕn for higher order transverse modes, the round-trip optical path length Lopt and the vacuum speed
of light c0, the phase δ is given by:

δ = ω0Lopt

c0
+ ϕm + ϕn . (20)
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Up to now, an incident field Ei(t) with a constant amplitude was considered. Therefore, the effect on the
output field in case of shutting down the input field at t = 0 with a decay constant γs is discussed in the
following. Under this condition, the input electrical field can be written as:

Ei(t) = Eie−iω0t t < 0,
Ei(t) = Eie−(γs+iω0)t t > 0. (21)

Using the decay constant of the cavity field:

γc = c0
Lopt

1−
√
Rp√

Rp
, (22)

the deviation between the frequency of the cavity mnq-th eigenmode ωmnq and the frequency of incident
light ω0:

∆ωmnq = ωmnq − ω0 , (23)

the mode-matching coefficient:

Amnq = Cmnq

√
TiTo
Rp

, (24)

and equations (19) and (21), the time dependent output field Eo(t) reads [17]:

Eo(t) = EiAmnq
c0
Lopt

1
γc + i∆ωmnq

e−iω0t

for t < 0 and

Eo(t) = EiAmnq
c0
Lopt

 1
γc − γs + i∆ωmnq

e−(γs+iω0)t + 1(
1− γc

γs
− i∆ωmnq

γs

)
(γc + i∆ωmnq)

e−(γc+iωmnq)t


for t > 0. (25)

The equation for t < 0 describes the steady state response of the cavity to the input field and the equation
for t > 0 represents the response of the cavity to shutting off the input field [17].
In addition, the equation can be simplified if the shut down of the input field is much faster than the
decay rate in the cavity (γs >> γc), which leads for t > 0 to:

Eo(t) = EiAmnq
c0
Lopt

1
γc + i∆ωmnq

e−(γc+iωmnq)t . (26)

This equation shows that the output electric field decays to zero after shutting down the input field at
t = 0. In addition, the output field, unlike the input field, oscillates at the cavity resonance frequency
[17].
After determining the intensity I(t) in an experiment, the following equation can be derived from equation
(26), which is plotted in figure (13). Thereby, the measurement of the decaying intensity after shutting
down the light source leads to a cavity decay time τc and is called cavity ring-down measurement.

I(t) = I0e−
t
τc (27)

Here, the cavity decay time τc and the steady-state intensity I0 are given by:

τc = 1
2γc

,

I0 = 1
2c0ε0 |Eo(t < 0)|2 , (28)

with the speed of light c0 and the vacuum permitivity ε0.
Thus, by measuring the output light’s exponential decay after shutting down the laser source, the cavity’s
decay time can be determined.
Moreover, using equation (22) yields: √

Rp

1−
√
Rp

= 2 c0
Lopt

τc . (29)
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Thus, if the round-trip optical path length Lopt and the cavity decay time τc are measured, the product
of the mirror reflectivities Rp can be calculated.

0 , 0 0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 0
0 , 0
0 , 1
0 , 2
0 , 3
0 , 4
0 , 5
0 , 6
0 , 7
0 , 8
0 , 9
1 , 0

 

 
I(t)

/I 0

t / τc

C a v i t y  r i n g - d o w n  m e a s u r e m e n t

Figure 13: Cavity ring-down curve. If the input field of the cavity is shut down, the stored light will decay
exponentially.

With the optical path length Lopt and the cavity decay time τc known, the finesse of the cavity can be
calculated. The finesse F is defined as the ratio of the cavity free spectral range ∆νFSR to the intensity
response function’s full-width at half-maximum ∆νc (the FWHM of the cavity transmission fringe in
frequency domain) [17]:

F = ∆νFSR
∆νc

. (30)

Moreover, the finesse is given by the mirror reflectivities [17]:

F = πR
1
4p

1−
√
Rp

(
= π
√
Rn

1−Rn

)
, (31)

where for the term in brackets, it was assumed, that the mirror reflectivities of both mirrors are equal
(Ri = Ro = Rn). Besides, using equations (22) and (28) and the approximation 4

√
Rp ≈ 1, the finesse F

can be expressed by the cavity decay time τc and the free spectral range ∆νFSR or the round-trip optical
path length Lopt, respectively:

F = 2π c0
Lopt

τc = 2π∆νFSRτc . (32)

Here, the relation
∆νFSR = c0

Lopt
(33)

was used [17].
In summary, the finesse F is given by the mirror reflectivities and determines the ratio of the cavity free
spectral range ∆νFSR to the cavity bandwidth ∆νc. Thereby, the free spectral range ∆νFSR only depends
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on the optical round-trip path length Lopt in the cavity. In addition, since the mirror reflectivity (and
therefore the finesse) is a fixed quantity, the cavity bandwidth depends directly on the optical round-trip
path length Lopt. Moreover, in an experiment the finesse F is determinable by measuring Lopt and the
decay time τc. Then, using equations (31) and (32) yields the finesse and the mirror reflectivities.

Moreover, the transmission spectrum of the Fabry-Pérot interferometer is a quantity of interest, since it
represents the frequency filtering properties of it. It can be derived from equation (19) by calculating the
ratio of the output intensity to the input intensity and is therefore given by the square of the absolute
value of the term in brackets. Assuming a perfect mode-matching (Cmnq = 1), the cavity transmission
spectrum T (δ), depending on the accumulated round-trip phase shift δ, can be written as:

T (δ) =
∣∣∣∣Eo

Ei

∣∣∣∣2 = 1

1 + 4
√
Rp

(1−
√
Rp)2 sin

2( δ2 )
. (34)

With equation (31) follows:
T (δ) = 1

1 + 4F 2

π2 sin2( δ2 )
. (35)

T (δ) has the form of an Airy function and is plotted for two different values of the finesse F in figure
(14) whereby δ = ω0

∆νFSR = 2π ν0
∆νFSR = 2πLoptλ0

with laser frequency ν0 and wavelength λ0 was used [18].
The full optical round-trip path length Lopt in the cavity equals twice the mirror spacing dm (refractive
index is taken as one). In addition, the cavity resonance bandwidth ∆νc, that is the full-width at half-
maximum of the cavity transmission fringe and the cavity free spectral range ∆νFSR are shown. Here
it becomes clear that with an increasing finesse (increasing mirror reflectivity) the bandwidth decreases
and, therefore, a higher resolution can be obtained.

This is taken into account by the resolving power RFPI of a Fabry-Pérot interferometer and is given by
[19][11]:

RFPI := λ0

∆λ0
= ν̃0

∆ν̃0
= qF . (36)

Here, λ0 is the wavelength and ∆λ0 is the minimal deviation that can be resolved referring to the Rayleigh
criterion. This can be expressed by frequencies using ν̃0 as the operating frequency and ∆ν̃0 as the minimal
resolvable deviation from ν̃0. In addition, the mode number q is determined by:

q = Lopt

λ0
. (37)

It follows, that in order to achieve a high resolving power, a long, high finesse cavity (with high mir-
ror reflectance) is needed. E.g. for λ0 = 1260 nm, Lopt = 70 cm and R = 0.99995 a resolving power of
RFPI = 3.5 · 1010 is achievable! Thus, from equations (36) and (37) the necessary values of R and Lopt in
order to achieve a certain resolution in an experiment is obtainable.

In a real experiment, the resolving power is reduced due to imperfections of the mirrors (e.g. bad surface
flatness) and mirror alignment, but these influences are strongly reduced if concave mirrors instead of
plane ones are used [20].
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Figure 14: Transmission spectrum of a Fabry-Pérot interferometer. Although mirrors with high reflectivity
are considered, in steady state condition at resonance frequency the transmission can achieve 100 % (in
case of no diffraction and absorption losses).

The resonances shown in figure (14) only consider the fundamental Gaussian modes (m = n = 0). For
higher order transverse modes, according to equation (20), an additional round-trip phase that shifts the
resonance frequencies is given. The frequency shift ∆νmn relative to the frequency of the fundamental
mode can be expressed by [21][22]:

∆νmn = (m+ n)∆νFSR
ϕG,rt

2π . (38)

Here, ϕG,rt is the phase shift per round-trip of the Gouy phase in the optical cavity and is stated by [10]:

ϕG,rt = 2 · arccos
{√(

1− dm
Rrad,1

)(
1− dm

Rrad,2

)}
, (39)

where dm is the mirror spacing and Rrad,n is the radius of curvature of the nth mirror, respectively.
The origin of ∆νmn can be found in equation (16) in the term exp [i(1 +m+ n)ϕG(z)], which leads to
an additional phase shift during propagation compared to the fundamental mode. The fundamental and
higher order modes in frequency domain are illustrated in figure (15) and can be calculated by simply
considering the cavity geometry as given by the equations (38) and (39).
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Frequency

fundamental longitudinal modes

higher order 
transverse modes Δν

FSR

Figure 15: Fundamental and higher order Gaussian modes in the frequency domain. Thereby, the fre-
quencies of the higher order transverse modes relative to the fundamental longitudinal modes is given by
the geometry of the cavity.

Up to now, incident light that matches a resonance of a cavity with a fixed optical path length was
considered. This condition is dropped, now. If the spacing between the cavity mirrors is changed with a
velocity v, the frequency of a certain cavity resonance νc,j changes due to the relation:

νc,j = j ·∆νFSR = j · c0
Lopt

, (40)

with j as an integer. Moreover, the frequency of the incident laser light is fixed. So if initially the laser
frequency does not match a resonance of the cavity, nearly no light is transmitted until the length is
changed in a way that the cavity transmission peak and the laser line shape overlap in frequency domain
again, which is illustrated in figure (16). Here, the cavity transmission fringe moves with an increase of
the optical path length towards longer wavelengths because of equation (40) and the relation between
wavelength and frequency λc,j = c0

νc,j
.
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length L
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further 
increase

Figure 16: Effect of increasing the cavity length on a certain transmission fringe represented by transmis-
sion fringes shown for three different cavity lengths. In addition, a in wavelength domain fixed Gaussian
laser line shape is shown, too.

The time of this overlap is proportional to the convolution of laser line shape and transmission peak
and the scan speed. Thus, changing the mirror spacing with a higher velocity v leads to a lower level of
transmitted intensity since there is less time to built up the cavity field.
The ratio of transmitted to incident light intensity is called the magnitude of the fringe MF and is given
by [6]:

MF (l) = Iout(l)
I0

= T 2
∫ ∞

0
dν 1
π

∆ν0
2

(ν − ν0)2 + (∆ν0
2 )2

·R2[l+δ(ν)]·

∣∣∣∣∣∣
∞∑

n=−[l+δ(ν)]

Rnexp
{
i2πνtr

v

c0
n2
}∣∣∣∣∣∣

2

. (41)

A detailed derivation can be found in [23], [24] and [25]. Here, T is the (intensity-) transmittance and
R the (intensity-) reflectance of the cavity mirrors. For the calculation both mirrors are assumed to be
equal. Therefore, according to equation (18), T = Ti = To and R = Ri = Ro =

√
Rp hold. Besides, ∆ν0

and ν0 are the laser linewidth and carrier frequency, v is the velocity of the moving mirror and tr is the
cavity round trip time (= Loptc

−1
0 ). Furthermore, l is the time t normalized to the round-trip time tr and

is therefore dimensionless:
l = t

tr
. (42)

In addition, δ(ν) is the dimensionless time difference between resonant instances for the frequencies ν
and ν0 [6]:

δ(ν) = −c0(ν − ν0)
2vν0

. (43)

Furthermore, the dependence of the exponential function’s phase πνtr 2v
c0
n2 on the mirror velocity v

accounts for the doppler shift that is introduced with each reflection of light at the moving mirror and
the term:

1
π

∆ν0
2

(ν − ν0)2 + (∆ν0
2 )2

=: gL(ν) (44)
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represents the Lorentzian lineshape of the tested laser. In case of another lineshape it is to be replaced.
E.g. for a Gaussian lineshape it has to be exchanged by [8]:

gG(ν) := 2
∆ν0

(
ln(2)
π

) 1
2

exp
{
− ln(2)(ν − ν0)2

(∆ν0
2 )2

}
. (45)

Moreover, in figure (17) equation (41) is plotted for the three different laser linewidths ∆ν0 = 10 kHz,
∆ν0 = 100 kHz and ∆ν0 = 500 kHz against the scan velocity. Thereby, an optical pathlength Lopt =
68 cm = 2 · dm = 2 · 34 cm with the mirror spacing dm was assumed (refractive index = 1) and the
relations T = 1 − R and τc = tr

−ln(R2) [26] were used. In addition, the scan velocity is denoted in free
spectral ranges per time. Since, the transmission spectrum of the Fabry-Pérot interferometer repeats itself
[see figure (14)] and the repetition is given after a change in mirror spacing dm by ∆dm = λ0

2 , the scan of
one free spectral range corresponds to this change in length. Thus, the following relation can be derived:

nFSR [FSR] = ∆dm
λ0
2

. (46)

Here, nFSR in units of free spectral ranges states how often the transmission spectrum is repeated for a
given length change ∆dm. Furthermore, using the mirror velocity v = ∆dm

t and ñFSR
[FSR

s
]

:= nFSR[FSR]
t ,

a relation between the mirror velocity v and the number of scanned free spectral ranges per second,
ñFSR

[FSR
s
]
can be calculated:

ñFSR

[
FSR
s

]
= 2v
λ0

. (47)
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Figure 17: Normalized magnitude of the fringe for three different linewidths ∆ν0 = 10 kHz, ∆ν0 = 100 kHz
and ∆ν0 = 500 kHz. Thereby, each MF curve is normalized to its maximum.

If the stability of the cavity is considered or light is coupled into the cavity (referring to mode-matching),
according to chapter (2.3), the transverse mode structure has to be taken into account. Thereby, the cavity
stability fundamentally depends on the mirror spacing dm and the radius of curvature of the individually
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mirrors Rn [22]. In figure (18) a fundamental Gaussian mode represented by its beam radius and curved
constant-phase wave fronts in a cavity is shown. The cavity consists of the spherically mirrors M1 and
M2 separated in distance by dm.

Figure 18: Fundamental Gaussian mode represented by its beam radius (dashed curved lines) in a cavity
with the spherically mirrors M1 and M2 in a distance dm. In addition, the curved constant-phase wave
fronts (continuous lines) are shown. From [16].

To achieve a stable cavity, where the beam reproduces itself after one round-trip, the following condition
has to be fulfilled [10][22]:

0 <
(

1− dm
Rrad,1

)(
1− dm

Rrad,2

)
< 1 , (48)

and is, therefore, an important design criterion for building a Fabry-Pérot interferometer. Here, Rrad,n is
the radius of curvature of the nth mirror.

Since, referring to chapter (2.3), the mode structure of the incident beam has to match the mode structure
of the cavity to couple as much light as possible into it, some knowledge about the cavity modes is
necessary. If a TEM00 mode is assumed for the incoming beam, the fundamental cavity mode is to be
analysed.
The radius of curvature Rbeam [given by equation (11)] of the constant-phase wave fronts of the circulating
beam in the cavity has to match the radius of curvature of the mirrors Rrad,n at the mirrors [16]. Assuming
z1 and z2 to be the positions of the first and second mirror, respectively, this condition reads:

Rbeam(z1) = −Rrad,1 and Rbeam(z2) = Rrad,2 , (49)

with z2 − z1 = dm. From this the Rayleigh range of the beam in the cavity zR can be calculated [16].

z2
R = dm(R1 − dm)(R2 − dm)(R1 +R2 − dm)

(R1 +R2 − 2dm)2 (50)

Moreover, equation (13) yields the beam waist radius ωbw in the cavity.

ωbw =
√
λ0zR
π

(51)

E.g. in case of a cavity with dm = 34 cm, equal mirrors with R1 = R2 = 1m and a wavelength of
λ0 = 1000nm one gets out a Rayleigh range of zR = 37.6 cm and a beam waist radius of ωbw = 346µm.
In addition, in figure (19) the spotsizes of the fundamental cavity mode dependent on the wavelength are
shown. Thereby, the spotsize is given by two times the beam waist radius ωbw.
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Figure 19: Mode-matching: Spotsize of the fundamental cavity mode at beam waist. Calculated for
dm = 38 cm and R1 = R2 = 1m.

Because an incident beam probably would has different values of Rayleigh range and beam waist after
passing the first cavity mirror, some optics to transform and adjust the incident Gaussian beam has to
be used. In figure (20) a suitable mode-matching optics consisting of two plano-convex lenses (a beam
telescope) is shown.
If the focal length of the first lens f1 is larger than the one of the second lens f2 the beam radius is
decreased by the ratio of these focal lengths. In general, the magnification Mmag of this type of beam
telescope is given by [27]:

Mmag = f2

f1
. (52)

In addition, the location where the beam telescope is placed and the distance between the lenses determine
the location of the new beam waist after being transformed by the telescope.
In an experiment the laser beam incident on the cavity (without any mode-matching optics in the path)
can be analysed with a beam propagation analyser to determine the initial beam parameters regarding the
position and size of the beam waist respectively, the Rayleigh length and the beam quality parameterM2.
Then, a software using the ABCD-matrix method for Gaussian beams can be used in order to calculate
the best positions of the lenses to obtain a good mode-matching between the incident beam after passing
the first cavity mirror and the fundamental cavity mode6.
In addition, in combination with the beam telescope an aperture can be used to avoid higher order
transverse modes of the incident beam, since they exhibit different resonance frequencies.

6Within this thesis the freeware reZonator was used to do these calculations.
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Figure 20: Mode-matching optics to adjust the incident beam to the fundamental cavity mode. Although,
plano-convex lenses are typically placed in the beam with the curved front in direction towards the
incident beam, here, the first lens is reversed to avoid the realisation of another Fabry-Pérot cavity, that
could influence the incident laser beam. The aperture (indicated by the black lines) is used in order to
avoid higher order transverse modes.

2.5 Acousto-optic modulator
Since an acousto-optic modulator is of high importance in several parts of the experiments, it is discussed
in more detail.

An acousto-optic modulator (AOM) is a device used to control the power, frequency or spatial direction
of a laser beam with an electrical drive signal [28].
It consists of a crystal that is transparent for the used wavelength and a piezo electric transducer attached
to this crystal to excite a sound wave of frequency νAOM in it and build up a periodic modification of
the refractive index by the oscillating mechanical pressure of the sound wave based on the acousto-optic
effect. Moreover, the introduced periodic modification is equal to a diffraction grating and the laser beam
propagates through the crystal. This leads to Bragg diffraction of the light, but in difference, the diffracted
light is frequency shifted by (positive and negative) integer multiples of the sound wave frequency because
of the momentum the sound wave exhibits and propagates in a slightly different direction [28]. Thereby,
the increase of the angle of change in direction is proportional to the frequency shift and is shown in
figure (21).
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Figure 21: Principle of an acousto-optic modulator. The laser beam propagating through the crystal
(frequency ν0) is diffracted due to a grating introduced by a sound wave and frequency shifted by (positive
and negative) integer multiples of the soundwave frequency νAOM.

The distance of the periodically repeated planes of equal density (and therefore of equal refractive index)
Λ is given by:

Λ = vs
νAOM

, (53)

with vs as the velocity of the sound wave in the crystal [10]. Moreover, using Bragg’s law, the angles of
diffraction Θn for that the condition of constructive interference is fulfilled in this periodic structure can
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be calculated by:
sin(Θn) = n

λ0

2Λ , (54)

with λ0 as the wavelength of the laser beam in the medium and n as the diffraction order [10]. The
frequency shift of the laser beam depends directly on the diffraction order n [9]:

ν0,n = ν0 + n · νAOM . (55)

with the laser frequency before diffraction ν0 and after diffraction into the order n ν0,n (with n =
...,−1, 0, 1, ...). Thereby, the fraction of incident intensity diffracted into a certain order, the diffraction
efficiency, is typically in the order of 65 % − 85 % and depends on the used AOM and wavelength, size
and divergence angle, respectively, of the modulated laser beam [28].
Furthermore, it is possible to use an AOM as an optical shutter if the light of any order except the zeroth
order is used, since only the drive signal of the AOM has to be switched off. Then, the laser beam is
turned off within a few tens or hundreds of nanoseconds.
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From equations (53) and (54) it follows, that shifting the frequen-
cy of the laser beam by νAOM means shifting the beam alignment
(Θn) simultaneously. This may be a big alignment issue if the fre-
quency shift is changed during an experiment and can be avoid-
ed by using an AOM double-pass configuration (AOM-DPC), as
shown in figure (22) [29][30][31]. Here, a horizontally polarised
(w.l.o.g.) laser beam passes a polarising beam splitter (PBS),
where horizontally polarised light is transmitted and vertically
polarised light is reflected off (indicated by the dashed red line),
respectively.
Next, the beam polarisation is turned from linear to circular by
means of a quarter-wave plate (λ/4, QWP) and focused into an
acousto-optic modulator (AOM) due to a bi-convex lens (BCL).
Thereby, the distance between this lens with focal length fBCL
and the AOM equals fBCL. By this, the beam waist of the laser
beam with its small size and divergence is located in the AOM
that is best to achieve a high diffraction efficiency (the laser beam
has to be smaller than the active aperture of the AOM and has
to fulfil the Bragg angle).
After the AOM a plano-convex lens (PCL) with focal length fPCL
is placed, again with a spacing between AOM and lens equal to
the focal length of the used lens (fPCL). Besides, behind the lens
all diffraction orders, except the first one, are blocked by an aper-
ture (A) and only the first order is reflected back by means of a
tiltable plane mirror (TM), afterwards. Due to this arrangement
the first order is always retro reflected into itself, even if the angle
of the first order is changed.
Then, the first diffraction order propagates through the AOM a
second time, is diffracted again and the new first diffraction order
propagates collinearly with the incident beama.
The laser beam passes the QWP again, which leads to vertical-
ly polarised light. Therefore, this time the light is reflected at
the PBS and can be used in an experiment. By this, the PBS in
combination with the QWP distinguishes between light travelling
towards the AOM and backwards, respectively.
The most important effect of this double-pass configuration on
the beam is the fact, that the alignment of the light outcoupled
at the PBS is no longer frequency dependent. Besides, the fre-
quency shift introduced to the light is doubled, because there are
always two passes through the AOM.

aThe laser beam incident on the AOM in direction BCL-AOM-PCL is
diffracted and the first order is used after retro-reflection as new incident
beam in direction PCL-AOM-BCL. This beam is diffracted again. Thereby,
by this configuration the beam alignment is automatically optimised for the
diffraction into the order that is collinear with the incident beam in direction
BCL-AOM-PCL.

AOM

1st

PBS

λ/4

A

BCL

TM

PCL
f
PCL

f
BCL

Figure 22: An acousto-optic
modulator in double-pass configu-
ration. The following symbols are
used: λ

4 (quarter-wave plate), A
(aperture), AOM (acousto-optic
modulator), BCL (bi-convex lens),
PBS (polarising beam splitter),
PCL (plano-convex lens) and TM
(tiltable mirror). Adapted from
[31].

To control the sound wave frequency in the AOM and, therefore, the introduced frequency shift, a
voltage controlled oscillator can be used. This device generates an electrical drive signal with a frequency
depending nearly linearly on the applied voltage.

2.6 Delayed self-heterodyne interferometry
Delayed self-heterodyne interferometry (DSHI) is a suitable technique to measure linewidths down to a
few tens of kHz if wavelengths are used, where optical fibres exhibit only low attenuation and an already
existing DSHI setup is used as reference for the Fabry-Pérot interferometer setup. Therefore, DSHI is
discussed in more detail.

24



2 THEORY
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Figure 23: Principle setup of delayed self-heterodyne interferometry. This figure is described in the text
below.

The principle setup is shown in figure (23). The light of the tested laser with carrier frequency νs and the
power spectral density’s full-width at half-maximum ∆ν is coupled into an optical fibre [32]. To prevent
feedback from the setup, that could influence the lasers output spectrum, an optical isolator is used.
Afterwards, the beam is split into two paths. On the first one, a frequency shift δν is introduced to the
laser light by an acousto-optic modulator (AOM) and leads to an oscillation frequency of νLO = νs − δν.
The second path serves as delay line of length Ldelay with length slightly longer than the coherence length
of the tested laser. Then, the two paths are combined again. Therefore, the frequency shifted light of the
laser is superimposed with a not frequency shifted but delayed version of it. Hence, a beat note of two
quasi independent lasers (one path is longer than the coherence length) occurs which is detected by a
photo diode (PD). Here, the incident intensity I(t) is given by [32]:

I(t) = Ps(t) + PLO(t) +
√
Ps(t)PLO(t)cos[2π(νs − νLO)t+ ∆ϕ(t)] , (56)

where Ps(t) is the power of the delayed version of the beam and PLO(t) the power of the frequency
shifted one, respectively. The third term indicates the interference beat note. It is modulated with a
cosine function, whereby the cosines frequency depends on the introduced frequency shift δν = νs − νLO
and the instantaneous phase difference ∆ϕ(t) between the two interfering beams. The output current of
the PD is analysed with an electrical spectrum analyser (ESA).
In figure (24) the power spectral densities SE(ν) of the delayed laser beam (top) and the frequency shifted
version (middle) are shown. Since both beams exhibit the same line shape and carrier frequency νs, if they
are split, and then the frequency of one beam is shifted by δν, both beams show the same power spectral
density (PSD) but shifted in frequency domain by δν. In addition, the PSD Si(ν) of the interference beat
note, obtained with the ESA, is depicted. It has twice the linewidth of the tested laser and is centred in
frequency at δν. From that, the line width of the tested laser can be derived by fitting a convolution of
Gaussian and Lorentzian function to the data [32].
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Figure 24: Power spectral densities SE(ν) of the delayed laser beam (top) and the frequency shifted
version (middle). Besides, the power spectral density Si(ν) of the interference beat note, detected by the
PD and analysed with the ESA, is shown (bottom). Thereby, ∆ν is the tested laser’s linewidth centred
around its carrier frequency νs and δν is the frequency shift introduced by the AOM [32].

If one calculates the introduced time delay due to the optical fibre τdelay = Ldelay
cfibre

with the speed of light
in the fibre cfibre, the resolution RDSHI of delayed self-heterodyne interferometry is given by [33]:

RDSHI = 1
τdelay

. (57)

E.g. for Ldelay = 25 km and a refractive index nfibre = 1.4511 a resolution of RDSHI ≈ 8.3 kHz can be
obtained but the laser and the setup have to be completely stable over the whole delay time that is
τdelay = 121µs in this case.
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3 Linewidth measurement with a Fabry-Pérot interferometer
using a length modulation technique

3.1 Experimental setup and performance
3.1.1 Cavity characterisation measurement

This setup is used to characterise the cavity (the Fabry-Pérot interferometer), which is necessary for the
linewidth measurement afterwards and is presented in figure (25). According to equation (32) it serves
the purpose of determining the cavity decay time τc and the free spectral range ∆νFSR to calculate the
finesse F of the cavity and the reflectivities R of its mirrors.

In the following, the mirrors used in the setup are presented in figure (25) (indicated by M and TM)7
but are not mentioned in the text which is describing the figure (25).

First, the linearly polarised light of the tested laser incidences on a half-wave plate (λ/2) to adjust the
polarisation to be exactly horizontal in order to achieve high transmission at a polarising beam splitter
(PBS) afterwards. By this, a high fraction of the linearly polarised laser light is usable for the AOM
double-pass configuration (AOM-DPC), that is discussed in detail in chapter (2.5). In addition, the laser
beam is slightly focussed by a bi-convex lens (BCL1, focal length = 400mm).
At the PBS, the first element of the AOM-DPC, only horizontally polarised light is transmitted and
vertically polarised light is reflected off (indicated by the dashed red line) and absorbed by a beam dump
(BD). The transmitted horizontally polarised light is turned into circularly polarised light by means of
a quarter-wave plate (λ/4, QWP) and focussed into an acousto-optic modulator (AOM, Brimrose TEF-
200-50-900/1300, driven by a Brimrose VFF-200-50-V-B1-V2-ARF voltage controlled oscillator VCO)
by a bi-convex lens (BCL2, focal length = 75mm). Then, light of the first diffraction order is retro-
reflected into itself by a combination of plano-convex lens (PCL1, Focal length = 75mm), aperture (A)
and mirror (M) and diffracted at the AOM a second time. Thereby, the distances between the BCL2 and
the AOM and the PCL1 and the AOM, respectively, are given by their focal lengths fBCL2 and fPCL1.
The laser light now frequency shifted twice, is turned into vertically polarised light due to the second
pass through the QWP and split off at the PBS towards the cavity. Therefore, the combination of PBS
and QWP serves as an optical isolator to avoid any back-reflection into the tested laser and is necessary
for the used AOM-DPC.
Moreover, the beam alignment of the AOM is no longer frequency dependent, which is necessary for a
good coupling into the cavity regarding mode-matching, later.

After the PBS, there is a second combination of a PBS and a QWP, again used as optical isolator in
order to discriminate between incident light and light that leaks out of the Fabry-Pérot interferometer.
In addition, the laser beam is slightly focussed by a bi-convex lens (BCL3, focal length = 400mm).

Next, the beam is mode matched coupled into the cavity8 using a mode-matching optics built up by two
plano-convex lenses9 and a pin hole to discriminate against higher order transverse modes. Thereby, it is
calculated with the freeware reZonator10 which lenses are to be used after analysing the laser beam inci-
dent on the cavity with a beam propagation analyser (Ophir BeamSquared) without any mode-matching
optics in the path. Moreover, a third (bi-convex) lens (BCL4) is used if the calculation yields lens posi-
tions that are not possible to apply, i.e. because there is already something else placed.

In addition, one mirror is mounted on a piezo electric transducer (PET, PI S-316.10 ), which is driven
by a controller (RampPET, PI E-727.3SD), that can apply ramp voltages and measures the current
elongation of the piezo with sub-nm resolution.

7Tiltable mirrors are indicated by TM and not tiltable mirrors are indicated by M, respectively.
8The cavity is built up by two equal and highly reflective plano-concave mirrors with a radius of curvature of Rrad = 1m

and a mirror spacing of dm = 38.0 cm. Depending on the wavelength of the tested laser, the mirrors are exchangeable. The
following mirrors are used: (1) Layertec 140992 (R > 0.99995 @ 960nm), (2) Layertec 140973 (R > 0.99995 @ 1045nm)
and (3) Layertec 140991 (R > 0.99995 @ 1260nm). Thereby, the individual mirrors are suited to operate a few tens of nm
around the specified wavelengths.

9According to chapters (2.3) and (2.4) and equation (52), the focal lengths depend on the beam transformation necessary
to match the transverse eigenmode of the cavity.

10This software uses the ABCD-matrix algorithm for Gaussian beams.
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Furthermore, behind the cavity there is a fast photo diode (PD, Femto HCA-S-200M-IN-FS) with a
bandwidth of 200MHz to measure the transmitted light, that is focused on the PD by a lens (PCL2,
focal length = 25mm). The output voltage of the PD is observed by an oscilloscope (Scope, Teledyne
Lecroy WaveSurfer 10 ) with a bandwidth of 1GHz.

Moreover, a sawtooth-signal from a frequency generator (RampVCO, KeySight 33510 B Waveform Gen-
erator) can be fed into the VCO to control the frequency shift introduced to the laser light. Since the
frequency of the VCO increases linearly with applied voltage, this has the effect of sweeping the frequency
of the laser light (above a transmission fringe of the cavity in frequency domain). In addition, the from
the VCO outgoing signal is observed on the Scope to measure its frequency and, therefore, the frequency
shift introduced to the light.

In addition, to reduce the influence of mechanical vibrations, the whole setup is situated on an air-floated
table and in order to reduce the influence of air turbulences, a beam path cover is used at the cavity,
respectively.
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Figure 25: Experimental setup of the cavity characterisation setup. The following symbols are used: λ
2

(half-wave plate), λ
4 (quarter-wave plate), A (aperture), AOM (acousto-optic modulator), AOM-DPC

(AOM double-pass configuration), ASG (AOM stop-signal generator), BCL (bi-convex lens), BD (beam
dump), M (mirror), MM (mode-matching optics), PBS (polarising beam splitter), PCL (plano-convex
lens), PD (photo diode), PET (piezo electric transducer), RampPET (controller of the PET), RampVCO
(waveform generator), Scope (oscilloscope), TM (tiltable mirror) and VCO (voltage controlled oscillator).

This experimental setup is used to measure the decay time τc and the free spectral range ∆νFSR of the used
cavity. According to chapter (2.4), the decay time is measured by means of a cavity ring-down measurement.
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To acquire cavity ring-down events, the laser beam frequency is increased by increasing the voltage applied
at the VCO until a resonance frequency of the cavity is matched and high transmission is achieved. The
piezo is not moved during this measurement. If the light, detected with the PD reaches a certain threshold
Vthreshold, the Scope is triggered, the laser beam is shut off and the exponentially decaying intensity is
measured.
Since there would be ringing on the decaying intensity due to the beat between the rising cavity field and
the incident laser beam whose frequency is still further shifted (out of resonance), it is necessary, that as
soon as the field in the cavity builds up the incident beam is shut off. Here, it is not enough, that only a
small fraction of light is coupled into the cavity in the off-resonance case and a shut down of the laser is
needed [24].
Therefore, a self-built here called AOM stop-signal generator (ASG) is used, that observes the trigger-out
port of the Scope. If the PD’s output voltage reaches Vthreshold and the Scope is triggered, a trigger pulse
is applied at this port. As long as the ASG registers no trigger pulse, it generates an output voltage of
approximately 1V, that is fed to the modulation input port of the VCO, which drives the AOM. If at the
VCO’s modulation input port 1V is applied, the VCO generates the necessary output signal to drive the
AOM and laser light is diffracted into the first order to be used in the experiment (in AOM-DPC). If 0V
is applied at the VCO, the drive signal necessary for the AOM is shut down and, thus, the laser beam is
shut off, since no light is diffracted into the first order any more and the zeroth order is blocked by an
aperture (0V: AOM off, 1V: AOM on). Thereby, if the Scope is triggered, and the laser beam is shut
off by means of applying 0V at the VCO this low-level voltage is hold for a time longer than the cavi-
ty ring-down event. The ASG’s standard output voltage is 1V. The ASG is described in more detail below.

In order to determine the free spectral range ∆νFSR of the cavity the AOM is driven by a fixed frequency
(= constant applied voltage at the VCO’s frequency port). In addition, in contrast to the measurement
of the cavity ring-down curve, the mirror mounted on the PET is moved by means of the PET by at least
a half wavelength to scan over more than one free spectral range. Simultaneously, the output voltage of
the PD is measured with the Scope. This is repeated for another laser frequency by changing the voltage
applied to the VCO’s frequency port. In addition, in both cases the frequency of the signal fed into the
AOM is measured with the Scope. By this, the laser is scanned by the Fabry-Pérot interferometer for two
wavelengths with known frequency shift. Besides, the piezo elongation (or position) is measured by the
piezo controller. From this, the free spectral range ∆νFSR can be derived, as shown in chapter (3.2.1).

Now, the ASG is described in more detail.
It is used to shut down the laser if a certain voltage output level at the PD Vthreshold is reached. Thereby,
the laser is shut down by using the modulation input port of the AOM driver (the VCO) and switching
the applied voltage from 1V down to 0V. Then, the laser beam is not diffracted into the first order any
more and blocked by a beam blocker. Since this shut down has to be fast in comparison to the cavity
decay time, fast electronics has to be used.

The ASG consists of the trigger out stage of the used oscilloscope, a voltage devider and a FPGA (Xilinx
Virtex-6 on a Xilinx ML605 board). In figure (26) the circuit diagram is depicted and in figure (27) a
photo of it is shown.

The trigger of the oscilloscope is set to Vthreshold. As soon as the Scope is triggered, the trigger out stage
generates an approximately 50ns long square-wave signal with 3.3V. Since this voltage level is to high
for the used FPGA, it is reduced by a voltage devider by using resistors with 250 Ω and 750 Ω. Therefore,
a suitable voltage level of 2.5V results.
The signal is fed to the FPGA and converted by an input buffer (IBUF) into a logical signal. The signal
leads to an OR-gate and to a finite state machine (Trigger FSM).
The combinatorial-only connection to the OR-gate results in a jitter-free processing of the trigger signal
with a fixed delay. The output signal of the OR-gate is inverted by a NOT-gate and turned into an analog
signal by the output buffer (OBUF). Thus, if the Scope is triggered the FPGA’s output voltage, that is
fed to the modulation input of the AOM driver, switches from 1.2V down to 0V and the laser is shut
down11.
However, the Scope’s trigger pulse only lasts about 50ns (which is much shorter than the cavity ring-down

11In figure (26) the OBUF generates a 2.5V voltage level but the input impedance of the modulation port is only 50 Ω.
Since the output stage of the FPGA is not able to hold the 2.5V for a low impedance the signal voltage breaks down to
1.2V that is close enough to the desired 1V.
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event). Therefore, the Trigger FSM, which is driven by an oscillator at 66MHz, samples the input signal
in parallelly and generates its own output signal with the adjustable duration toff. When the Scope’s
trigger signal becomes low, that would lead to an output voltage back to 1.2V, the FSM’s output signal
is already in a high state and the output voltage is hold at 0V. Thus, the AOM remains shut off.
Combining both signals via the OR-gate results in a jitter-free rising edge signal with an adjustable
duration. Thereby, the FSM’s output signal duration toff is set by a MicroBlaze SoftCore Processor,
which is connected to the PC via an on-board USB-UART-Bridge. Therefore, the shut down signal’s
duration can be set in a convenient way via a terminal application on the PC.

VCO
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750 Ω  2.5 V IBUF
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FSM

Oscillator
at 66 MHz
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Figure 26: Circuit diagram of the AOM stop-signal generator. This figure is described in the text above.
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Figure 27: Photo of the AOM stop-signal generator.

In figure (28) a measurement is shown, where the response time tASG,resp of the ASG was measured by
triggering the Scope and feeding the output of the ASG back to the Scope. It yields tASG,resp = 47.9 ns
where the delay between triggering the Scope and the Scope’s trigger out pulse already was 25ns.
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Figure 28: AOM stop-signal generator (ASG) electronic response time measurement.

In figure (29) the time between triggering the Scope and the laser intensity decay τs, relevant for this
experiment, was measured with a fast photo diode (Thorlabs DET08CL/M ) with a bandwidth of 5GHz.
This time τs was determined to be τs = 1208ns.
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Figure 29: AOM stop-signal generator (ASG) laser shut down time measurement. After the oscilloscope
was triggered the laser intensity decayed down to 10 % within 1208 ns.

3.1.2 Cavity length modulation measurement

This setup is used to determine the laser’s linewidth ∆ν0 and is presented in figure (30).
The linearly polarised light of the tested laser is turned by a half-wave plate (λ/2) to be polarised hori-
zontally. Next, the beam propagates through a beam splitter (BS), where a small fraction of the light is
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split off to be measured with a wavemeter (λ, HighFinesse WS8-10 ).
Simultaneously, the major part of the light passes a combination of polarising beam splitter (PBS) and
quarter-wave plate (λ/4, QWP), which equals an optical isolator (independent of the propagation di-
rection of the light with respect to the PBS, horizontally polarised light is transmitted and vertically
polarised light is split off). Therefore, no light, that could influence the output spectrum of the laser, is
reflected back.
Afterwards, the beam is coupled into the Fabry-Pérot interferometer12 with mode-matching optics con-
sisting of two plano-convex lenses13 and a pinhole. In addition, a third lens (bi-convex lens BCL) is used
to adjust the beam as well as possible to the cavity’s fundamental mode. To find the best lenses regarding
their focal lengths and lens positions, the same procedure as described in chapter (3.1.1) by means of
usage of a beam propagation analyser and the freeware reZonator is used.
Moreover, one of the cavity mirrors is held by a piezo electric transducer (PET, PI S-316.10 ), which is
driven by a controller (RampPET, PI E-727.3SD), that can apply ramp voltages to sweep the cavity
mirror and, therefore, the cavity transmission fringe in frequency domain over the laser lineshape. More-
over, the controller is connected with a PC to detect the current elongation of the piezo from which the
mirror velocity v can be derived.
The light transmitted through the Fabry-Pérot interferometer is focused by a bi-convex lens (BCL, focal
length = 25.4mm) on a photo diode (PD, Femto HCA-S-200M-IN-FS) with a bandwidth of 200MHz.
The PD is fed to an oscilloscope (Scope, Teledyne Lecroy WaveSurfer 10 ) connected with the PC to
transfer the data to it. The Scope has a bandwidth of 1GHz. Since the time of overlap of the cavity
transmission fringe and the laser lineshape is of the order of a few µs, these high bandwidths are neces-
sary.
In addition, to reduce the influence of mechanical vibrations, the whole setup is situated on an air-floated
table and in order to reduce the influence of air turbulences, a beam path cover is used at the cavity,
respectively.

12The Fabry-Pérot interferometer is built up by two equal and highly reflective plano-concave mirrors with a radius of
curvature of Rrad = 1m and a mirror spacing of dm = 38.0 cm. Depending on the wavelength of the tested laser, the mirrors
are exchangeable. The following mirrors are used: (1) Layertec 140992 (R > 0.99995 @ 960nm), (2) Layertec 140973 (R
> 0.99995 @ 1045nm) and (3) Layertec 140991 (R > 0.99995 @ 1260nm). Thereby, the individual mirrors are suited to
operate a few tens of nm around the specified wavelengths.

13According to chapters (2.3) and (2.4) and equation (52), the focal lengths depend on the beam transformation necessary
to match the eigenmode of the cavity.
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Figure 30: Experimental setup of the cavity length modulation setup. The following symbols are used: λ
(wavemeter), λ2 (half-wave plate), λ4 (quarter-wave plate), BCL (bi-convex lens), BD (beam dump), BS
(beam splitter), MM (mode-matching optics), PBS (polarising beam splitter), PD (photo diode), PET
(piezo electric transducer), RampPET (controller of the PET), Scope (oscilloscope) and TM (tiltable
mirror).

The linewidth measurement is done by sweeping the cavity mirror mounted on the piezo with defined
velocities v. Thereby, the intensity transmitted through the Fabry-Pérot interferometer is observed with
respect to its maximum.

For convenience, during the linewidth measurement, the AOM-DPC used for the cavity characterisation
setup is also integrated in the light path to build both setups as one. Thereby, during the whole mea-
surement the AOM of the AOM-DPC is used with a constant frequency shift. Since the AOM-DPC is
not used for this measurement, it is not depicted in figure (30).

3.1.3 The complete setup

As already mentioned, two measurements, the cavity characterisation measurement and the cavity length
modulation measurement are necessary to measure the linewidth of the tested laser. Indeed, the two
setups are built as one, but not every component is used in each measurement and in addition, the data
analysis is completely separated. Therefore, for a better understanding and a clear presentation the two
setups are treated separately further on.
Nevertheless, figure (31) shows the complete setup as built up in real life and in figure (32) a photo is
depicted. Moreover, figure (33) shows a close-up photo without electronic devices, in figure (34) the ray
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trace is depicted and figures (35) and (36) present the piezo and how it is connected to the beam path
cover.

Laser

PD

BD

λ

Light path

Electronic path

     RampPET

ASG

     Scope

VCO AOM

1st

BS

λ/2

λ/4

A

BCL2

M

PCL1
f
PCL1

f
BCL2

TM

M

BD

TM

TM

TM

TM

PBS

BCL1

BD PBS

λ/4

MM

PET

PCL2

     RampVCO

BCL3

BCL4

PC

AOM-DPC

Figure 31: Complete setup as built in the lab. The following symbols are used: λ (wavemeter), λ2 (half-
wave plate), λ4 (quarter-wave plate), A (aperture), AOM (acousto-optic modulator), AOM-DPC (AOM
double-pass configuration), ASG (AOM stop-signal generator), BCL (bi-convex lens), BD (beam dump),
M (mirror), MM (mode-matching optics), PBS (polarising beam splitter), PCL (plano-convex lens), PD
(photo diode), PET (piezo electric transducer), RampPET (controller of the PET), RampVCO (waveform
generator), Scope (oscilloscope), TM (tiltable mirror) and VCO (voltage controlled oscillator).
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Figure 32: Photo of complete setup as built in the lab. 01: Fibre coupled and collimated output of tested
laser, 02: Long-pass filter to filter out 532nm pump light of the OPO-process, 03: HWP, 04: Lens, 05:
PBS, 06: QWP, 07: Pinhole, 08: AOM, 09: Cavity input mirror, 10: Cavity output mirror mounted on the
piezo, 11: Beam path cover, 12: PD, 13: Beam propagation analyser, 14: Scope, 15: Frequency generator,
16: Piezo driver, 17: ASG and 18: AOM Driver (VCO). Mirrors are not labelled.
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Figure 33: Close-up photo of complete setup as built in the lab. 01: Fibre coupled and collimated output of
tested laser, 02: Long-pass filter to filter out 532nm pump light of the OPO-process, 03: HWP, 04: Lens,
05: PBS, 06: QWP, 07: Pinhole, 08: AOM, 09: Cavity input mirror, 10: Cavity output mirror mounted
on the piezo, 11: Beam path cover and 12: PD. Mirrors are not labelled.
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Figure 34: Photo of complete setup as built in the lab with ray trace shown.

Cavity output mirror

Cavity output mirror mount

Piezo

Figure 35: Photo of the cavity output mirror mounted on the piezo.
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Figure 36: Installation of the cavity output mirror, mounted on the piezo, into the beam path cover.

3.2 Data acquisition and analysis
3.2.1 Cavity characterisation measurement

Now, the results of the two cavity characterisation measurement are discussed. Thereby, the cavity decay
time is determined with a typically used cavity ring-down measurement (CRDM) and the free spectral
range (FSR) is obtained by a self-developed experiment.
Since the decay time is highly dependent on the mirror reflectivity depending on the wavelength the
CRDM has to be done for each wavelength for that linewidths shall be measured. Here, it is only dis-
cussed for one wavelength because the measurement performance is independent from the wavelength.
Moreover, the FSR measurement is also done for only one wavelength. For this experiment it is not
necessary to perform it for all wavelengths since the differences in the optical round-trip path length,
caused by the dielectric resonator mirrors coatings, is below the desired resolution.

First, the cavity decay time is determined.

According to chapter (2.4), the cavity decay time τc is derived from the cavity ring-down measurement,
where the intensity I(t) is measured after shutting down the light source.
In figure (37) such a measurement is shown that was measured for a laser wavelength of λ0 = 1045 nm.
In addition, the function

y(t) = I0e−
t
τc + IN (58)

is fitted to the data, where I0 is the maximal intensity and IN is the intensity of noise and back ground
light. The fit yields for the cavity decay time τc = (2.329 ± 0.015)µs, for the maximal intensity I0 =
0.00940V and for the noise intensity IN = 0.00290V with the statistical parameter R2 = 0.98091. As
uncertainty the standard deviation στc = 0.015µs is taken.
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Figure 37: Cavity ring-down measurement to determine the cavity decay time with frequency scan done
by the AOM. The exponential fit y(t) = I0 · exp

(
−t τ−1

c
)

+ IN yields τc = (2.329 ± 0.015)µs with
R2 = 0.98091. The data was acquired without averaging.

Up to now only the statistical error στc = 0.015µs is included in the cavity decay time’s uncertainty.
From equations (32) and (33) an expression for the cavity decay time’s uncertainty δτ̃c introduced by
means of any change in the cavity length can be derived:

δτ̃c =
∣∣∣∣ ∂τc∂dm

· δdm
∣∣∣∣ =

∣∣∣∣nrefFπc0
· δdm

∣∣∣∣ . (59)

Here, the optical round-trip path length Lopt = 2nref dm with the refractive index nref and the mirror
spacing dm and the finesse F were used.
The first uncertainty that has to be taken into account is the position stability of the used piezo. The
observation of the position feedback given by the piezo controller, that, according to the manufacturer
has an accuracy of 0.4 nm [34], yielded drifts of about δdpiezo = 50nm within 30min.
Besides, the temperature and, therefore, the cavity mirror spacing are not fixed values14. Considering a
change in temperature of ∆T = 1K an additional uncertainty of the cavity mirror spacing due to thermal
expansion δdthermal can be calculated:

δdthermal = αsteel · dm ·∆T = 10.5 · 10−6 1
K · 38.0 cm · 1K = 3990nm . (60)

Thereby, the linear thermal expansion coefficient of steel αsteel = 10.5 ·10−6 1
K [35] and the mirror spacing

dm = 38.0 cm, calculated below in equation (72), were used.
Now, the additional uncertainty of the cavity decay time reads:

δτ̃c =
∣∣∣∣nrefFπc0

· (δdpiezo + δdthermal)
∣∣∣∣ =

∣∣∣∣ 1.00026 · 7068
π · 2.998 · 108 m

s
· (50 nm + 3990 nm)

∣∣∣∣ = 0.00003µs . (61)

Here, nref = 1.00026 [36] and the finesse F = 7068, calculated below in equation (75), were used.
The comparison of δτ̃c = 0.00003µs and στc = 0.015µs shows that δτ̃c is negligible in this context.

14The cavity consits of two mirrors mounted on an optical table (Newport) made of steel.
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Overall, ten cavity ring-down measurements were done, the decay times were calculated as described above
and, then, the individual decay times were arithmetically averaged. This yields τ c = (2.434 ± 0.055)µs,
where the bar indicates the averaged value, as for all following quantities.

In addition, a cavity ring-down measurement where the piezo was used to scan the frequency instead of
using the AOM15 [23] was done.
The measurement result is shown in figure (38), where the acquired data was averaged 500 times. Again,
the fit function given by equation (58) was fitted to the data. Due to the high averaging a decay time
with much lower uncertainty results and is given by τc, piezo = (2.85562 ± 0.00062)µs. Since the stated
uncertainty (0.00062µs) is no longer large in comparison to δτ̃c = 0.00003µs it is added to the uncertain-
ty. Thus, τc, piezo reads τc, piezo = (2.85562± 0.00065)µs.

Therefore, a discrepancy between the cavity decay times determined with AOM and piezo results, but it
is not clear where it originates from. Probably it is caused by an insufficient mechanical stability of the
built Fabry-Pérot interferometer that is discussed below.

Since this measurement serves the purpose to characterise the cavity for the linewidth measurement and
the piezo is used there to scan the laser line shape instead of using the AOM, the value given by the piezo
measurement is used in the following.
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Figure 38: Cavity ring-down measurement to determine the cavity decay time with frequency scan done
by the piezo. The exponential fit y(t) = I0 · exp

(
−t τ−1

c
)

+ IN yields I0 = 0.0139V, IN = 0.00339V and
τc = (2.85562± 0.00062)µs with R2 = 0.99998. The data was acquired with 500 times averaging.

According to the condition of equation (26), namely that in case of cavity ring-down measurements the
decay rate of the incident laser beam γs has to be large in comparison to the decay rate of the cavity
γc (γs >> γc), this condition seems to be fulfilled only in a weak way, because there is only a factor

15Shifting the laser frequency with the AOM and holding the cavity resonance frequency constant is equal to holding the
laser frequency constant and shifting the cavity resonance frequency with the piezo since both leads to the desired overlap
between laser line shape and cavity transmission fringe in frequency domain.
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of 2.4 between these values. This condition can be rewritten to τc >> τs. With respect to figure (29)
(measurement of the shut down time τs of the laser incident on the cavity) it leads to:

τc, piezo = 2.85562µs
?
>> 1.208µs = τs . (62)

Nevertheless, on the decay curve taken with the piezo there is no ringing visible that would be the case
if the laser is shut down to slowly [24].

Moreover, the free spectral range
∆νFSR is calculated, whereby the
following derivation is referred to
figure (39).
If monochromatic light is in
resonance with the Fabry-Pérot
interferometer, the cavity length
equals a multiple of the half wave-
length of the light, because there
are nodes of the electric field at
the cavity end mirrors. Therefore,
after increasing the cavity length
by a half wavelength, the resonance
condition is fulfilled again. Since
in resonance the transmitted in-
tensity is maximised, there will be
periodically transmission of light if
the length is raised. This is shown in
figure (39) for two wavelengths λ0,0
(39 a) and λ0,1 (39 b). In addition,
with xi,n as the cavity length in case
for which the nth cavity resonance
(for the ith wavelength) is matching
the laser wavelength, the following
relation is given:

xi,n+1 = xi,n + λ0,i
2 . (63)

Moreover, by scanning both wave-
lengths of the laser and combining
both scans in one plot, the situa-
tion shown in (39 c) will occur. Since
in scanning mode the spectrum ob-
served by the Fabry-Pérot interfer-
ometer is repeated periodically if the
free spectral range is reached, scan-
ning over more than one FSR will re-
sult in the presented picture. If the
second wavelength λ0,1 has its ori-
gin in shifting the frequency of the
first wavelength λ0,0 by ∆νref with
an AOM, the following relationship
is given, due to energy conservation:

c0
λ0,1

= c0
λ0,0

+ ∆νref . (64)
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Figure 39: Determination of the Fabry-Pérot interferometer’s free
spectral range. The wavelengths λ0,0 and λ0,1 correspond to different
frequency shifts introduced by the AOM. In addition, ∆νref is the
frequency difference of λ0,0 and λ0,1.
In a) the transmitted intensity against the piezo position for
the wavelength λ0,0 is shown. Thereby, x0,n, x0,n+1 and x0,n+2
correspond to piezo positions for which the resonance condition is
fulfilled. In b) the same plot but for the second wavelength λ0,1 with
the resonance piezo positions x1,n, x1,n+1 and x1,n+2 is depicted.
Moreover, in c) the signal curves of a) and b) are presented in one
plot together.

If ∆νref is known and according to the fact that the FSR determines the width of the spectrum that can
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be observed, an equation from which the FSR ∆νFSR can be calculated, is given by:

x1,n − x0,n
x0,n+1 − x0,n

= ∆νref
∆νFSR

. (65)

Here, the assumption that ∆νFSR does nearly not change with the increase of the cavity length, was
made. Indeed, ∆νFSR changes only by 0.00019 % if the length is increased by 650 nm for a cavity length
of dm = 34 cm. Therefore, ∆νFSR is given by:

∆νFSR = x0,n+1 − x0,n
x1,n − x0,n

∆νref . (66)

In addition, it should be outlined, that in this derivation and in the theory chapter, all formulas were
derived with a refractive index nref = 1. Nevertheless, the real refractive index, although unknown, is
included as an increased cavity length in all measured quantities, or it is cancelled out because of the
fraction as in equation (65). Any refractive index used in the calculations serves the purpose to estimate
the uncertainties of measured quantities, only. The optimum values are not affected.

The measurement was done with a laser wavelength of λ0 = 1090 nm. The measurement of the piezo
positions, for which a maximum in transmission is observed, yields x0,n+1 = (610.8 ± 0.4) nm, x0,n =
(66.1± 0.4)nm and x1,n = (115.0± 0.4)nm. Since the laser is always twice frequency shifted if incident
on the cavity (AOM-DPC) and the difference between the two wavelengths used for the measurement
results from driving the AOM with two different frequencies νAOM,1 and νAOM,2, respectively, the reference
frequency ∆νref equals two times the difference between the AOM frequencies, which were measured by
feeding the signal of the VCO to the AOM and to the oscilloscope. Thus, the reference frequency ∆νref
is given by:

∆νref = 2νAOM,2−2νAOM,1 = 2 ·(νAOM,2−νAOM,1) = 2 ·(150.6709MHz−133.1231MHz) = 35.0956MHz ,
(67)

with νAOM,1 = 133.1231MHz and νAOM,2 = 150.6709MHz. Moreover, the uncertainty of the reference
frequency δ∆νref is calculated by:

δ∆νref =
∣∣∣∣ ∂∆νref
∂νAOM,1

· δνAOM,1

∣∣∣∣+
∣∣∣∣ ∂∆νref
∂νAOM,2

· δνAOM,2

∣∣∣∣ = |−2 · δνAOM,1|+ |2 · δνAOM,2|

= 2 · (δνAOM,1 + δνAOM,2) = 2 · (62.2 kHz + 60.3 kHz) = 245.0 kHz (68)

with the uncertainties of the AOM frequencies δνAOM,1 = 62.2 kHz and δνAOM,2 = 60.3 kHz measured
with the oscilloscope. Thus, ∆νref = (35.0956± 0.2450)MHz.
Now, ∆νFSR can be calculated.

∆νFSR = x0,n+1 − x0,n
x1,n − x0,n

∆νref = 610.8nm− 66.1nm
115.0nm− 66.1nm · 35.0956MHz = 390.9MHz (69)

In addition, the uncertainty of the free spectral range δ∆ν̂FSR following from this calculation is given by:

δ∆ν̂FSR =
∣∣∣∣∂∆νFSR
∂x0,n+1

· δx0,n+1

∣∣∣∣+
∣∣∣∣∂∆νFSR
∂x0,n

· δx0,n
∣∣∣∣+
∣∣∣∣∂∆νFSR
∂x1,n

· δx1,n
∣∣∣∣+
∣∣∣∣∂∆νFSR
∂∆νref

· δ∆νref
∣∣∣∣

=
∣∣∣∣ 1
x1,n − x0,n

∆νref · δx0,n+1

∣∣∣∣+
∣∣∣∣ x0,n+1 − x1,n
(x1,n − x0,n)2 ∆νref · δx0,n

∣∣∣∣
+
∣∣∣∣− x0,n+1 − x0,n

(x1,n − x0,n)2 ∆νref · δx1,n
∣∣∣∣+
∣∣∣∣x0,n+1 − x0,n
x1,n − x0,n

· δ∆νref
∣∣∣∣

=
∣∣∣∣ 1
115.0 nm− 66.1 nm · 35.0956MHz · 0.4 nm

∣∣∣∣+
∣∣∣∣ 610.8 nm− 115.0nm
(115.0 nm− 66.1 nm)2 · 35.0956MHz · 0.4 nm

∣∣∣∣
+
∣∣∣∣− 610.8 nm− 66.1 nm

(115.0nm− 66.1nm)2 · 35.0956MHz · 0.4 nm
∣∣∣∣+
∣∣∣∣610.8 nm− 66.1 nm
115.0 nm− 66.1 nm · 0.2450MHz

∣∣∣∣
= 9.1MHz . (70)

It follows ∆νFSR = (390.9± 9.1)MHz.
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Since the cavity free spectral range ∆νFSR = c0(2nref dm)−1 depends on the cavity length, the uncertainty
of the mirror spacing δdpiezo + δdthermal = 4040 nm has to be taken into account as in case of the cavity
decay time. This error δ∆ν̃FSR follows from:

δ∆ν̃FSR =
∣∣∣∣∂∆νFSR
∂dm

· δdm
∣∣∣∣ =

∣∣∣∣− c0
2nref d2

m
· (δdpiezo + δdthermal)

∣∣∣∣
=
∣∣∣∣− 2.998 · 108 m

s
2 · 1.00026 · (38.0 cm)2 · 4040 nm

∣∣∣∣
= 0.00009MHz , (71)

where the refractive index nref = 1.00026 [36] and the mirror spacing dm = 38.0 cm, calculated below in
equation (72), were used. Since this additional uncertainty due to thermal and piezo drifts is small with
respect to the result of equation (70) it is neglected.

Again, ∆νFSR was measured ten times and averaged arithmetically, which leads to ∆νFSR = (393.9 ±
9.6)MHz.

In addition, for the calculation of the uncertainties of cavity decay time and free spectral range, the
mirror spacing dm is needed and can be derived from ∆νFSR = c0L

−1
opt = c0(2nref dm)−1. With refractive

index nref = 1.00026 [36] the mirror spacing dm follows:

dm = c0

2nref ∆νFSR
=

2.998 · 108 m
s

2 · 1.00026 · 393.9MHz = 38.0 cm . (72)

Besides, as a control result for the FSR ∆νFSR, the FSR is determined by using the distance dm between
the mirrors measured with a ruler and calculating the FSR with equation (33). Using the refractive index
of air nref = 1.00026 [36], the vacuum speed of light c0 = 2.998 ·108 m

s and the measured distance between
the mirrors dm = (38.0± 0.1) cm, this yields:

∆νFSR, ruler = c0
2 · nref · dm

=
2.998 · 108 m

s

2 · 1.00026 · 38.0 cm = 394.3MHz , (73)

with the uncertainty δ∆νFSR given by:

δ∆νFSR, ruler =
∣∣∣∣∂∆νFSR
∂dm

· δdm
∣∣∣∣ =

∣∣∣∣− c0
2 · nref · d2

m
· δdm

∣∣∣∣ =
∣∣∣∣− 2.998 · 108 m

s
2 · 1.00026 · (38.0 cm)2 · 0.1 cm

∣∣∣∣ = 1.0MHz ,

(74)
where the uncertainty δdm = 0.1 cm is used. Thus, the FSR ∆νFSR, ruler = (394.3 ± 1.0)MHz measured
with a ruler and the FSR ∆νFSR = (393.9 ± 9.6)MHz determined prior are in compliance within their
uncertainties.

Now, according to equation (32), the finesse F of the Fabry-Pérot interferometer can be calculated by
using the cavity decay time τc, piezo = (2.85562 ± 0.00065)µs and the free spectral range ∆νFSR =
(393.9± 9.6)MHz:

F = 2π∆νFSRτc, piezo = 2π · 393.9MHz · 2.85562µs = 7068 . (75)

Besides, the uncertainty of the finesse δF is derived from:

δF =
∣∣∣∣ ∂F

∂∆νFSR
· δ∆νFSR

∣∣∣∣+
∣∣∣∣ ∂F

∂τc, piezo
· δτc, piezo

∣∣∣∣
=
∣∣2πτc, piezo · δ∆νFSR∣∣+

∣∣2π∆νFSR · δτc, piezo
∣∣

= |2π · 2.85562µs · 9.6MHz|+ |2π · 393.9MHz · 0.00065µs|
= 174 . (76)

Thus, the finesse is given by F = 7068± 174 and the Fabry-Pérot interferometer is fully characterised.
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3.2.2 Cavity length modulation measurement

From this measurement, the linewidth of the tested laser ∆ν0 is determined.

According to equation (41), the magnitude of the fringe MF is recorded for the varied mirror velocity v.
Thereby, the mirror intensity transmission T , the mirror intensity reflectance R, the cavity decay time
τc, the cavity round-trip time tr and the laser frequency ν0 are necessary quantities for the calculation of
the theoretical curves which are fitted to the experimentally measured data.

The cavity decay time τc, piezo = (2.85562± 0.00065)µs is already measured.

In addition, the cavity round trip time tr is given by [9]:

tr = 1
∆νFSR

. (77)

With ∆νFSR = (393.9±9.6)MHz follows tr = (2.539±0.062) ns where the uncertainty δtr was calculated
by:

δtr =
∣∣∣∣ ∂tr

∂∆νFSR
· δ∆νFSR

∣∣∣∣ =

∣∣∣∣∣− 1
∆ν2

FSR

· δ∆νFSR

∣∣∣∣∣ =
∣∣∣∣− 1

(393.9MHz)2 · 9.6MHz
∣∣∣∣ = 0.062ns . (78)

Moreover, the laser wavelength λ0 = (1044.802415 ± 0.000036) nm was measured with a wavemeter16.
Since the refractive index is already included in the measured value of the wavelength, the laser frequency
ν0 is given by:

ν0 = c0
λ0

=
2.998 · 108 m

s

1044.802415nm = 286.93699THz . (79)

The uncertainty of the laser frequency δν0 is stated as follows:

δν0 =
∣∣∣∣ ∂ν0

∂λ0
· δλ0

∣∣∣∣ =
∣∣∣∣− c0λ2

0
· δλ0

∣∣∣∣ =
∣∣∣∣− 2.998 · 108 m

s

(1044.802415nm)2 · 0.000036nm
∣∣∣∣ = 0.00001THz . (80)

where δλ0 is the uncertainty of the wavelength. Therefore, the laser frequency is determined to ν0 =
(286.93699± 0.00001)THz.

As already mentioned, the mirror intensity reflection coefficient R is needed. It can be derived by solving
equation (31) numerically:

F = π
√
R

1−R . (81)

Therefore, equation (81) is solved for a set of mirror reflectivities Rk with
Rk ∈

{
Rk = k · 10−7 with k ∈

{
0, 1, 2, ..., 107 − 1

}}
:

Fk = π
√
Rk

1−Rk
. (82)

As mirror reflectivity the Rk value is chosen, that leads to the smallest deviation between Fk(Rk) and
F = 7068, where the deviation is much smaller than the uncertainty of F . In addition, the uncertainty
of the mirror reflectivity is calculated by repeating this procedure for F → F − δF = 7068− 174 = 6894
and F → F + δF = 7068 + 174 = 7242, respectively. It follows R = 0.999556± 0.000011.

Furthermore, the mirror intensity transmission T ensues from T = 1−R as T = 0.000444± 0.000011.

Thereby, the determined mirror reflectivity of R = 0.999556± 0.000011 is not in agreement with the re-
flectivity R = 0.99995 stated by the manufacturer. The reason for this is a problem with the mechanical
stability of the Fabry-Pérot interferometer, that is discussed below.

16The used wavemeter HighFinesse WS8-10 has a specified uncertainty of 10MHz, which equals 0.000036nm at a wave-
length of 1045nm.
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With these values of τc, piezo, tr, ν0, R and T equation (41) is solved numerically for a set of potential
laser linewidths ∆ν0 with a step size of δ∆ν0 = 10 kHz against the mirror velocity v. Thereby, a detailed
description of the numerical calculation is shown in section (5.1). Moreover, for each theoretically calcu-
latedMF∆ν0(v) curve the χ2 [MF∆ν0(v)] value given by equation (83) is calculated. From thatMF∆ν0(v)
curve the lowest value of:

χ2 [MF∆ν0(v)] =
∑
k

[αfe(vk)− fc(vk)]2

fc(vk) (83)

is obtained, the linewidth ∆ν0 is chosen as linewidth of the tested laser, since this MF∆ν0(v) curve de-
scribes the measured data best. Thereby, α is a scale factor for the calculation to adjust the measured
intensity to the calculated one. Moreover, fe(vk) is the experimentally measured magnitude of the fringe
for the kth velocity vk and fc(vk) = MF∆ν0(vk) the theoretically calculated value for the kth velocity vk,
respectively [6].

Due to stability problems with the built Fabry-Pérot interferometer (FPI), that are discussed below, no
successful measurement could be done to determine the linewidth with the cavity length modulation tech-
nique. Therefore, to illustrate the determination of the linewidth using equation (83), a labview routine
was programmed in order to generate theoretically calculated MF∆ν0(v) curves for potential linewidths
∆ν0 of 210 kHz, 230 kHz, 250 kHz, 270 kHz and 290 kHz using the experimentally measured parameters
for τc, piezo, tr, ν0, R and T . Then, a second labview routine was programmed to fit these curves to the
250 kHz linewidth curve that was interpreted as measured data leading to χ2 values (depending on the
linewidth) as shown in figure (40). I.e. for the 250 kHz linewidthMF (v) curve interpreted as measured da-
ta and the theoretically calculated 210 kHz linewidth MF∆ν0=210 kHz(v) curve the χ2 [MF∆ν0=210 kHz(v)]
was calculated. Then, for the 250 kHz linewidthMF (v) curve interpreted as measured data and the theo-
retically calculated 230 kHz linewidth MF∆ν0=230 kHz(v) curve the χ2 [MF∆ν0=230 kHz(v)] was calculated
and so on.
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Figure 40: Calculated χ2 values [given by equation (83)] for theoretically calculated MF∆ν0(v) curves for
potential linewidths ∆ν0 equal to 210 kHz, 230 kHz, 250 kHz, 270 kHz and 290 kHz and the theoretically
calculated 250 kHz linewidth MF (v) curve which was interpreted as measured data. Since the lowest χ2

value occurs for the linewidth 250 kHz (as expected) this linewidth would be chosen as linewidth of the
tested laser.
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As soon as the stability problems are solved, the resolution of the linewidth determination using the
cavity length modulation technique (CLMT) is of great importance. Therefore, the expectable resolution
is discussed, now.
According to equation (32) (τc ·∆νFSR = const. and τc ∝ dm), in case of an increase of the mirror spacing
dm the cavity decay time (DT) τc is increased and the free spectral range (FSR) ∆νFSR is decreased, and
vice versa in case of a decreased mirror spacing dm.
Thus, to consider the effect of the uncertainties of measured DT τc, piezo = τc,0 ± δτc = (2.85562 ±
0.00065)µs and FSR ∆νFSR = ∆νFSR,0 ± δ∆νFSR = (393.9 ± 9.6)MHz on the uncertainty of the
linewidth determined by the CLMT, it is possible to calculate the MF∆ν0(v) curves for the poten-
tial linewidths ∆ν0 = 210 kHz, 230 kHz, 250 kHz, 270 kHz and 290 kHz using the optimum values of
measured DT (τc,0 = 2.85562µs) and FSR (∆νFSR,0 = 393.9MHz) and compare this with calcu-
lated MF∆ν0(v) curves using the minimum [maximum] DT (τc,0 − δτc = 2.85562µs − 0.00065µs =
2.85497µs) [(τc,0 + δτc = 2.85562µs + 0.00065µs = 2.85630µs)] and the maximum [minimum] FSR
(∆νFSR,0 +δ∆νFSR = 393.9MHz+9.6MHz = 403.5MHz) [(∆νFSR,0−δ∆νFSR = 393.9MHz−9.6MHz =
384.3MHz)].
Then, from a graphical presentation it can be estimated, which MF∆ν0(v) curves are still distinguishable
and which are not17.

This is depicted in figure (41) and yields an uncertainty of 1 kHz if only the uncertainties of the quantities
describing the FPI (DT, FSR) are considered. Not considered are any uncertainties of the transmitted
intensity measured with the photo diode.
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Figure 41: Consideration of the uncertainty of the cavity length modulation measurement. The stat-
ed magnitude of the fringe corresponds to the maximum fraction of incident light that is transmit-
ted for any time. The MFcenter(250 kHz) curve is nearly overlapped with the MFIncLen(250 kHz) and
MFDecLen(250 kHz) curves.

It ensues that the uncertainties of cavity decay time and free spectral range can be neglected. Hence, as
17Here it was also tested if the deviation in case of an increased DT and an increased FSR leads to a higher deviation

from the best value curve but the deviation was even smaller.
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uncertainty of the linewidth the fundamental limit given by the equations (36) and (37), respectively, is
used. Besides, the relation ∆νFSR = c0 L

−1
opt is utilised. Thus:

RFPI = ν̃0

∆ν̃0
= c0 F

λ0 ∆νFSR
= ν0 F

∆νFSR
. (84)

ν̃0 and ∆ν̃0 are the considered frequency and frequency deviation, respectively, λ0 is the laser wavelength,
c0 the speed of light and Lopt the optical round-trip path length.
Therefore, the minimal resolvable deviation in frequency referring to the laser frequency ν0 with ν̃0 = ν0
reads:

∆ν̃0 = ∆νFSR
F

. (85)

Now, for the uncertainty of the laser linewidth δ∆ν0 the uncertainty δ∆ν̃0 of ∆ν̃0 is taken into account,
too. This leads to:

δ∆ν0 = ∆ν̃0 + δ∆ν̃0

= ∆ν̃0 +
∣∣∣∣ ∂∆ν̃0

∂∆νFSR
· δ∆νFSR

∣∣∣∣+
∣∣∣∣∂∆ν̃0

∂F
· δF

∣∣∣∣
= ∆νFSR

F
+
∣∣∣∣ 1
F
· δ∆νFSR

∣∣∣∣+

∣∣∣∣∣−∆νFSR
F 2 · δF

∣∣∣∣∣
= 393.9MHz

7068 + 9.6MHz
7068 + 393.9MHz · 174

(7068)2 (86)

= 58 kHz .

As a result the resolution of the CLMT would be 58 kHz if the fluctuations of the cavity transmission
fringes were reduced far enough.

Within this thesis it was not possible to measure the linewidth with the built Fabry-Pérot interferometer
(FPI) due to very large fluctuations of the heights of the transmission peaks. Thereby, the maximum
height of a transmission peak equals the MF -value, and even if averaging is used it has to be stable
within a certain range to achieve the desired resolution, since the differences between the MF -values for
linewidths that are only a few kHz separated are small [see figure (41)].

Now, the origin of those fluctuations is investigated.

First, with the FPI a complete FSR was scanned for a laser wavelength of λ0 = 1045nm (using C-WAVE
#023 ) and the measured signal curve is shown in figure (42).
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Figure 42: Transmission signal curve for scanning over more than one FSR. It was taken using C-WAVE
at a wavelength of λ0 = 1045nm with the setup in the path [the standard measurement condition as
represented in figure (31)] with a scan speed of v = 12FSR/s. The two high peaks correspond to the
(q,0,0) and (q+1,0,0) FPI modes.

Although more than one FSR is shown with two resonances with approximately the same peak height, this
is by far not reproducible with each scan. Thereby, the resonance heights vary extremely. If considering
one of the two shown resonances, starting with the shown resonance height as 100 %, for the next scans
possibly 10 %, 50 %, 80 %, 20 %, 110 %, 20 %, 25 %, 40 %, 10 % and 70 % is observable, whereby no pattern
is discernible and the peak heights seem to vary randomly. Only one of a few tens of taken signal curves
shows the depicted situation and the variations are far above those expected from the signal-to-noise ratio.

Therefore, the individual resonances are investigated further on, regarding the origin of those fluctuations.
In the following, the shown signal curves always correspond to one of the main resonances shown in figure
(42). Thereby, different measurement conditions were applied. The laser beam was coupled into the FPI
with and without the complete setup in the light path to check influences of the setup, the scan velocities
were varied to examine any possible time dependence and a second laser, but not another C-WAVE was
used, to validate a potential problem with the laser source.

First, a theoretically calculated signal curve given for the measurement parameters [using equation (41)]
is depicted in figure (43).
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Figure 43: Theoretical signal curve of transmitted intensity. Calculated for the parameters: Scan velocity
v = 15FSR/s, wavelength λ0 = 1045 nm, free spectral range ∆νFSR = 393.9MHz and laser linewidth
∆ν0 = 200 kHz. The curve shows a small amount of asymmetry that increases with increasing scan speed
(not shown here) but the general signal curve shape stays the same.

Now, measurement data is shown.
Thereby, the frequency scanning was done with the piezo driven by a ramp-voltage (as in all cases where
the piezo was used to scan the frequency) and the oscilloscope was triggered each time the piezo reached
a certain position (using the position feedback of the piezo controller with a resolution of 0.4 nm and
the piezo controllers trigger out function) where only data was taken during the rising edge of the ramp
voltage.
In each case for that resonances are shown, they were chosen from at least 20 observed resonances.
Thereby, resonances representing the ensemble of measured resonances, because they show characteris-
tics (number of peaks, ...) that are typical for the individual measurement parameters, are depicted.

In figure (44) the comparison of the observed transmission fringes in cases of the whole setup (AOM-DPC,
...) is in the path of the laser beam incident on the Fabry-Pérot interferometer (right side) and the beam
is coupled into the FPI only with mode-matching optics in the path (left side), respectively, is shown. It
was measured with C-WAVE #023 at 1045 nm and a piezo velocity of 15FSR/s. Thereby, the question
is if there are differences between the resonances for the two cases that would lead to the interpretation
that something in the setup causes the deviation from the theoretically expected signal curve [shown in
figure (43)].
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Figure 44: Comparison of the observed transmission fringes in cases of the whole setup (AOM-DPC path,
...) is in the path of the laser beam (right) and the laser beam is coupled into the FPI only with mode-
matching optics in the path (left). Thereby, always one main resonance [i.e. the (q,0,0) mode] is shown.
In both cases the main resonances decompose in many sub peaks.

Since, the main resonances decompose in many sub peaks and vary in their number of peaks and peak
heights independent of the cases of the whole setup (AOM-DPC, ...) is in the path and the laser beam is
incident directly on the FPI, an influence of the setup is very unlikely.

In order to justify the exclusion of the setup as reason for the observed fluctuations of the transmission
fringe heights further, the beam pointing stability and laser’s power stability directly in front of the FPI
were measured.

The short time power stability in front of the cavity was measured with a Thorlabs DET08CL/M photo-
diode (5GHz bandwidth) and the Teledyne Lecroy WaveSurfer 10 oscilloscope (1GHz bandwidth) using
C-WAVE #023 at a wavelength of λ0 = 1045nm. The result is shown in figure (45).
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Figure 45: Power stability in front of the cavity. The standard deviation is only 0.09 % of the averaged
power.

The standard deviation is only 0.09 % of the averaged power. Therefore, the power stability of the laser
(although the beam was diffracted at the AOM twice) is not the reason for the fluctuating resonance
peak heights since the fluctuation is much higher for them.

Moreover, the pointing stability directly in front of the cavity was measured with a Thorlabs BC106N-
VIS/M beam profiler with C-WAVE #023 at a wavelength of λ0 = 1045nm and is presented in figure
(46).
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Figure 46: Pointing stability in front of the cavity.

Although the beam pointing exhibits slow drifts of about 65µm over 8 hours18 the short time stability
looks well enough to exclude a pointing stability problem to explain the fluctuating heights of the cavity
transmission peaks.

Thus, only the laser beam of C-WAVE #023 (e.g. in a potential multi-mode operation or if unusual high
frequency drifts are the case) or the FPI itself can cause the observed fluctuations of the transmission
peak heights.

To exclude an influence of the used laser a measurement was done with another laser (ALS seed laser
with stated linewidth of 50 kHz). This is shown in figure (47) where the laser beam was incident directly
on the FPI and the two scan velocities v = 2FSR/s and v = 18FSR/s were chosen.

18This is not shown here, since in this case only the short time stability is relevant because the cavity field build up time
is in the order of few µs.
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Figure 47: Transmission fringes taken with the ALS seed laser incident directly on the FPI for the two
scan velocities v = 2FSR/s and v = 18FSR/s.

Here, for a low scan rate the resonances deviate extremely and for a high scan rate much less from the
theoretically expected signal curve. This measurement yields that C-WAVE does not cause the observed
resonance heights fluctuations. But, in addition, a high influence of the scan rate is found. To further
investigate this dependence, C-WAVE was used with the setup in the path, whose influence was excluded,
and resonances were taken for the three scan rates 5FSR/s, 15FSR/s and 29FSR/s. This is presented in
figure (48).
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Figure 48: Comparison of the transmission fringes taken with C-WAVE with the whole setup in the path
for the scan velocities 5FSR/s, 15FSR/s and 29FSR/s.

This measurement yields a definite influence of the scan speed. With higher scan rate, the number of
peaks decreases, as in the case of using the ALS seed laser. This is probably the case, since with increasing
scan rate the time of the overlap between laser lineshape and FPI transmission fringe decreases. Thus,
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potentially present mechanical instabilities of the FPI would have a decreased influence.
Nevertheless, according to figure (41), it is not possible to simply use higher scan rates, since the peak
height fluctuations are still far above the desired peak height stability between individual measured
resonances to apply the cavity length modulation technique in order to determine the laser’s linewidth.

Therefore, a much more stable cavity is to be built.

There was a last measurement to be sure about the interpretation of an unstable cavity leading to the
observation of multiple peaks instead of one, as theoretically expected.
Thereby, the cavity input mirror mount was exchanged by a much more stable configuration as shown in
figure (49). The cavity input mirror mount used first, was in parts self-built to get a mount that is mov-
able parallel to the optical desk by using the brass screws for a more convenient and precise adjustment
of the cavity input mirror mount.
In addition, the output mirror mounted in the cavity output mirror mount, that is affixed to the piezo
[see figure (35)] is encapsulated between to washers in this cavity output mirror mount. Here, a third
washer was added, to hold this mirror more tightly.

Figure 49: Cavity input mirror holder before (left) and after (right) it was exchanged.

As the measurement depicted in figure (50) shows, the increase of mechanical stability leads to the
observation of resonances that are much more consistent with the theory. Thereby, this measurement is
to be compared with the resonances shown in figure (44, left).
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Figure 50: Single resonance after optimisation of the cavity input mirror mount and the piezo mirror
mount.

Probably, the bad mechanical stability of the cavity mirror mounts, especially of the cavity input mirror
mount used before the mechanical optimisation, led to instabilities of the mirror focus positions with
respect to the FPI’s optical axis, that led to the excitation of higher order modes exhibiting other reso-
nance frequencies and took away power from the main resonances.

Moreover, the cavity decay time was remeasured with this now more stable FPI to explain the deviation
between the measured cavity mirror reflectivity (R = 0.999556 ± 0.000011) and the one stated by the
manufacturer (R = 0.99995). The remeasurement, where only a few measurements were done19 in order
to estimate the decay time after the stability improvements, yields a decay time of at least 25µs. This
corresponds to mirror reflectivities of at least R = 0.999949 that is in agreement with the stated reflec-
tivity.

Therefore, the instability of the FPI during the prior shown measurements caused this discrepancy.

Nevertheless, a complete redesign of the used cavity with respect to mechanical stability is necessary
and it is worth to be done due to the promising results already achieved. Especially, since the previously
estimated resolution of 58 kHz [given by equation (86)] is reduced down to 7 kHz if considering the decay
time after the mechanical optimisation.

In addition, there was a delayed self-heterodyne interferometry measurement of the linewidth at laser
wavelengths in the interval from λ0 = 1090nm to λ0 = 1280nm as presented in figure (51)20.

19Unfortunately, there was not enough time to do accurate measurements again with high averaging and redo the data
analysis with a decay time value after the stability improvements.

20The setup was built by K. Fuchs, A. Becker and P. Baum (Department of Technological Physics, Institute of Nanos-
tructure Technologies and Analytics, Kassel University).
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Figure 51: Experimental setup of the DSHI experiment. The following symbols are used: AOM (acousto-
optic modulator), AOMC (AOM controller), ESA (electrical spectrum analyser), OI (optical isolator), P
(polariser) and PD (photo diode).

According to chapter (2.6), the light of the tested laser was coupled into an optical fibre, first. To prevent
feedback from the setup, that could influence the lasers output spectrum, an optical isolator (OI, Thorlabs
IO-H-1550FC ) with a reduction of back reflection by 36dB was used. Afterwards, the beam was split
into to paths by means of a 50:50 fibre coupler, whereby the unused port was terminated by 20dB with
an attenuator.
On the first path, a frequency shift of 80MHz was introduced to the laser light by an acousto-optic mod-
ulator (AOM, AA AA.MT80-MIR30-Fio-PM0,5-J1-S-VSF), which was driven by a IntraAction Corp.
ME-80 controller (AOMC) with 80MHz output frequency.
The second path served as delay line with length of 10 km realised by a long optical fibre (Corning SM
Optical Fiber ITU-T G.652.D). Besides, a polarisation controller (P) was in the path21, since only equally
polarised light can be used for recording the beat note.
Then, the two paths were combined again with another 50:50 fibre coupler. Here, the unused port was
attenuated by 20dB, too. Therefore, the frequency shifted light of the laser was superimposed with a not
frequency shifted but delayed version of it. Hence, a beat note of two quasi independent lasers occurred,
that was detected by a fast photo diode (PD, Thorlabs DET01CFC ) with a bandwidth of 1.2GHz. In
addition, the intensity incident on the PD was measured with a powermonitor (EigenLight Power Moni-
tor 410 ).
Moreover, after filtering out the DC-part of the PD’s signal by means of a bias tee from Picosecond Pulse
Labs, the signal was fed into an electrical spectrum analyser (ESA, Agilent Technologies N9010A).

As tested laser Hübner C-WAVE #021 was used.

The measurement data was taken by scanning the beating spectrum with the ESA from 79MHz to
81MHz within a sweep time of 0.1ms (scan rate = 20 GHz

s ) and was averaged 100 times. In addition, the
individual spectra were analysed by a Matlab routine. Such a spectrum is depicted in figure (52) with a
convolution of Gaussian and Lorentzian lineshape (Voigt profile) fitted to the data.

21With this kind of polariser it was possible to turn the polarisation plane of the laser light, too.
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Figure 52: DSHI measurement: Recorded beating spectrum at 1270 nm normalised to its maximum. ESA
sweep time: 0.1ms, ESA bandwidth: 79MHz - 81MHz, ESA scan rate: 20 GHz

s , averaging: 100. The
red line indicates the Voigt profile as convolution of the underlying Lorentzian profile (blue line) and
underlying Gaussian profile (green line), respectively.

Obviously, the Voigt-profile does not describe the lineshape well. Therefore, in order to indicate the
FWHM linewidth the full width at the −3 dB level was taken directly. The linewidths measured in this
way are shown in figure (53). Thereby, the indicated uncertainty is given by equation (57):

RDSHI = 1
τdelay

= 1
48µs = 21 kHz . (87)
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Figure 53: DSHI measurement: Experimentally obtained linewidths depending on the wavelength. ESA
sweep time: 0.1ms, ESA bandwidth: 79MHz - 81MHz, ESA scan rate: 20 GHz

s , averaging: 100.

The DSHI measurement yields linewidths between ∆ν0,DSHI = (283 ± 21) kHz and ∆ν0,DSHI = (399 ±
21) kHz in the wavelength interval from 1090nm to 1280nm depending on the wavelength.

Moreover, it should be outlined again, that the correct delay length has to be chosen. Any other delay
length has a strong influence on the measured linewidth [37]. In figure (54) the necessary delay length of
the optical fibre depending on the linewidth is shown.
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Figure 54: DSHI measurement: Necessary fibre length. Calculated for a refractive index of ncore = 1.41
using the relations ∆ν0 = t−1

coh between the laser linewidth ∆ν0 and the coherence time tcoh and tcoh =
lcohc

−1
fibre between coherence length lcoh and time tcoh with the speed of light in the fibre cfibre, respectively.

The length of the fibre used in the experiment was 10 km.

According to necessary fibre lengths empirically obtained, in practice the necessary fibre length is roughly
four times the theoretically calculated value [stated in figure (54)]. Considering additionally the measured
linewidths [see figure (53)], a fibre length of about 4 km was necessary, but a fibre with length of 10 km
was used.

In [37] it is discussed, that a longer delay length than necessary leads to an increase of the measured
linewidth due to noise introduced by the long optical fibre. For example, a initially measured linewidth
of 1.000MHz for a delay length of 1 km resulted in 1.423MHz linewidth in case of 5 km delay.
Therefore, it is probably, that the linewidths of C-WAVE measured with DSHI are increased due to noise
introduced by the long fibre. Moreover, this also explains why the lineshape shown in figure (52) seems
to be broadened (strong Gaussian part).

In addition, the OPO resonator’s optical round-trip path length (of C-WAVE) is controlled by a piezo
electric transducer, since one of the resonator mirrors is mounted on this piezo. The piezo varies the
resonator length in order to achieve a constant carrier frequency of emitted laser radiation by using the
Pound-Drever-Hall stabilisation technique. Moreover, after the DSHI measurement it was observed that
there were jumps in the voltage applied at the piezo leading to spontaneous shifts of the central emission
wavelength in the order of a few hundreds of kHz.
If such a shift occurs between the measurement of two individual beating spectra, they should not be
affected. But if the laser frequency changes by many kHz during the time the beating spectrum is scanned
by the ESA and the shift is not discrete and instant with respect to the corresponding timescale (the time
of recording one beating spectrum), an increased linewidth should occur. Besides, the lineshape should
be flattened at the top.
Since the voltage jumps occurred on timescales shorter than the measurement time for one spectrum,
this consideration yields a strongly broadened and at the top flattened lineshape as expected beating
spectrum and this describes the recorded beating spectrum [shown in figure (52)] well.
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Thus, the linewidths obtained by DSHI are probably broader than in reality.

Now, although an accurate calculation of the linewidth of emitted laser radiation of C-WAVE is not
possible due to the complexity of the OPO-system, an estimation is done. Thereby, a Singly-resonant
continious-wave optical parametric oscillator [see chapter (2.2)] is considered, where the signal is resonant
and the idler is non-resonant and coupled out. Moreover, the OPO-resonator is composed of a non-linear
crystal used for the parametric interaction, two intra-cavity etalons ET1 and ET2, respectively, and four
mirrors that realise a ring cavity. Thereby, the OPO is similar to the model depicted in figure (5) but
with two etalons integrated.
The linewidth of the outcoupled idler light is determined by the following quantities:

• The gain curve width ∆νGain of the non-linear parametric interaction,

• the bandwidth ∆νc,ET1 of the intra-cavity etalon ET1 (regarding the resonant signal beam),

• the bandwidth ∆νc,ET2 of the intra-cavity etalon ET2 (regarding the resonant signal beam),

• the bandwidth ∆νc,res of the ring-resonator cavity (regarding the resonant signal beam) and

• the linewidth ∆ν0,pump of the pump laser,

those are consecutively discussed, now.

Firstly, the width ∆νGain of the gain curve, resulting from the quasi-phase-matching in the non-linear
crystal for a given temperature, has to be broad in relation to the bandwidths of the intra-cavity etalons
∆νc,ET1 and ∆νc,ET2, respectively, the bandwidth of the resonator cavity ∆νc,res and the linewidth of
the pump laser ∆ν0,pump, since the central wavelength of the outcoupled idler light is tunable within the
gain curve without changing the crystal temperature and, therefore, the gain curve itself, over more than
100GHz.

Secondly, the bandwidth of the ring-resonator cavity ∆νc,res regarding the resonant signal beam is de-
termined by the optical round-trip path length Lopt,res of the cavity and the mirror reflectivities of the
individual mirrors Rres,i. Since the mean reflectivity of the mirrors Rres,avg is given by the product of
the individual reflectivities, Rres,avg = 0.999978 · 0.999978 · 0.999950 · 0.999976 = 0.999882 results [17].
Here as following, the calculation is exemplarily done for an idler wavelength of 1185.0nm corresponding
to a signal wavelength of 965.4nm. According to equation (31), this yields for the finesse Fres = 26622.
Moreover, the round-trip length Lopt,res = 38.9 cm corresponds to a free spectral range [eq. (33)] of
∆νFSR,res = 771MHz that, in return, leads to a bandwidth of ∆νc,res = 28.9 kHz.

Thirdly, the effective bandwidth ∆νc,i of the intra-cavity etalon i (i = ET1,ET2) depends on the average
number of round-trips of the light in the cavity Nrt, since with each round-trip the light is affected by the
etalon again [14] [5]. Thereby, if p is the number of passes, the relation between the single-pass bandwidth
∆νc,i(p = 1) and the bandwidth after p passes ∆νc,i(p) is given by [14]:

∆νc,i(p) = 1
√
p

∆νc,i(p = 1) . (88)

Hence, first the number of round-trips Nrt has to be estimated. Neglecting any losses and considering
only the empty cavity, Nrt is given by [5]:

Nrt = Fres
π

= 26622
π

= 8474 . (89)

Obviously, the value for Nrt should be to high since, e.g. there is additional absorption at the crystal, so
Nrt can be seen as an upper limit to the number of round-trips.
In addition, the single-pass bandwidth ∆νc,ET1(p = 1) is to be calculated. Thereby, the mirror reflectivities
of the air-spaced etalon ET1 are equal and given by RET1 = 0.5, leading to FET1 = 4.44. Moreover, the
spacing between the etalon plates is changeable by means of a piezo electric transducer and, thus, the free
spectral range varies between ∆νFSR,ET1 = 200GHz and ∆νFSR,ET1 = 250GHz, where in the following
the average value ∆νFSR,ET1 = 225GHz is used for calculation. By this, a single-pass bandwidth of
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∆νc,ET1(p = 1) = 50.7GHz results. Besides, the bandwidth considering the mean number of cavity
transits Nrt is calculated to be:

∆νc,ET1 := ∆νc,ET1(p = Nrt) = 1√
Nrt
·∆νc,ET1(p = 1) = 1√

8474
· 50.7GHz = 551MHz . (90)

As already mentioned, Nrt can be seen as an upper limit for the cavity round-trips. Therefore, ∆νc,ET1
is probably broader in reality.

Fourthly, the intra-cavity etalon ET2 has to be treated as ET1.
Since, ET2 is a solid 25µm thick uncoated YAG etalon, the reflectivity of the endfacets is given by
the refractive index step between air (nair = 1.000277, from [38]) and YAG (nYAG = 1.833, from [39]).
According to the fresnel formula [10], the reflectivity is:

RET2 =
∣∣∣∣nair − nYAGnair + nYAG

∣∣∣∣2 =
∣∣∣∣1.000277− 1.833
1.000277 + 1.833

∣∣∣∣2 = 0.086 . (91)

For such a low reflectivity, the formula for the finesse (31) is no longer valid, since it is an approximation
for reflectivities close to one22. In addition, the exact formula for the Airy finesse, that is given by [26]:

F = ∆νFSR
∆νc

= π

2

[
arc sin

(
1−
√
R1R2

2 · (R1R2) 1
4

)]−1

(92)

has no solution for reflectivities smaller than given through
√
R1R2 = 0.172. The fundamental reason

is, that the concepts of linewidth and finesse of the Airy distribution break down at this point at that
the finesse equals one [26], because the linewidth would be broader than the free spectral range if the
reflectivity would be lowered further.
Hence, the second intra-cavity etalon ET2 is compared with the first one ET1 to discuss its influence on
the linewidth.
With thickness and refractive index of the YAG etalon a free spectral range of ∆νFSR,ET2 = 3271GHz
follows. Therefore, considering the first equality in equation (92), the linewidth of the intra-cavity etalon
ET2 is much broader than the linewidth of ET1, since, even if the reflectivities of both etalons would be
equal (resulting in the same finesse), the linewidth of ET2 would be ∆νFSR,ET2

∆νFSR,ET1 = 3271GHz
225GHz = 14.5 times

broader than the one of ET1. Hence, the second etalon is negligible in this discussion.
Indeed, even the bandwidth of the first etalon ET1 is broad in comparison with the cavity bandwidth.
Thus, both etalons ET1 and ET2 do not affect the linewidth of the outcoupled idler beam and only serve
the purpose, to tune the center frequency of the outcoupled light.

Fifthly, the influence of the pump laser with respect to its linewidth ∆ν0,pump has to be discussed.
It affects the linewidth of the outcoupled idler light, since the idler linewidth is given by the convolution
of the resonating signal and singly passing pump beam [5]. The considerations done before yield for the
signal a linewidth ∆ν0,signal of roughly the cavity bandwidth ∆νc,res, since the etalons have very broad
bandwidths in comparison with the cavity bandwidth. Thus, ∆ν0,signal ≈ ∆νc,res ≈ 28.9 kHz. In addition,
the linewidth of the pump laser Cobolt Samba (cw diode-pumped solid-state laser, 532 nm, 1500mW) is
specified to be ∆ν0,pump < 1MHz, but according to the manufacturer it should be considerably smaller.
Moreover, the lineshape should be Lorentzian shaped due to homogeneous thermal phonon broadening
[9].
Referring to chapter (2.1), the linewidth of the convolution of two Lorentzians is given by the sum of the
individual linewidths. Moreover, the lineshape of the cavity is given by an Airy function, but it can be
approximated with a Lorentzian function, because the cavity mirror reflectivities are very high [40].
Thus, at 1185nm the linewidth of the idler and, therefore of the output beam of C-WAVE, ∆ν0, is:

∆ν0 = ∆ν0,pump + ∆ν0,signal = ∆ν0,pump + 28.9 kHz . (93)

Considering the linewidth measured with DSHI at 1185nm of (308 ± 21) kHz [see figure (53)], it is not
meaningful to calculate the idler linewidth with the specified value of ∆ν0,pump ≈ 1MHz. Instead, for
each wavelength measured [shown in (53)] the signal linewidth ∆ν0,signal is calculated as described above

22Nevertheless, formula (31) was used to calculate the finesse for the mirror reflectivity RET1 = 0.5, because the error
made here is already small in this case.
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and plotted in figure (55). Then, using equation (93), the pump laser linewidth is calculated for each
wavelength by subtracting the calculated signal linewidth from the measured idler linewidth. This leads
to a pump linewidth of ∆ν0,pump = (258.7 ± 36.0) kHz where as uncertainty the standard deviation is
taken. In a self-consistent way the individual calculated signal linewidths are added to the the averaged
pump linewidth of ∆ν0,pump = (258.7 ± 36.0) kHz and plotted in figure (55). This approach is self-
consistent, since for nearly all wavelengths the measured and the calculated idler linewidths match within
their uncertainties23. Therefore, the theoretically calculated and experimentally measured values are self-
consistent. That proves that it is a valid approximation to consider only the four resonator mirrors and to
neglect both etalons, any absorption, e.g. in the non-linear crystal and acoustical and mechanical noise,
that affects the cavity length and therefore the bandwidth and linewidth of the resonating signal light.
At least the last influence should be strongly reduced because of the used Pound-Drever-Hall technique
that stabilises the cavity length [5].
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Figure 55: DSHI measurement: Comparison of measured and calculated idler linewidths. In addition, the
calculated linewidths of the resonant signal beam are depicted, too.

Unfortunately, it is not possible to compare the linewidths measured with DSHI with the linewidths ob-
tained from the own setup, since no successful measurement with the cavity length modulation technique
could be done during this thesis.

3.3 Summary
3.3.1 Cavity characterisation measurement

The cavity ring-down measurement was done in order to determine the FPI’s DT to calculate the FPI’s
finesse and mirror reflectivities by using the measured FSR.

23The used C-WAVE was not equipped with a wavemeter. In this case a much higher uncertainty of the emitted center
wavelength of 2 nm is given, but the reflectivities are taken from the data sheets of the mirrors for the configured wavelengths.
Here, at least, it is possible for the wavelength 1280nm to choose mirror reflectivities of the adjacent wavelength 1278nm
that result in a consistent calculated idler linewidth.
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It leads a DT τ c = (2.434 ± 0.055)µs in case of using the AOM to scan the frequency with 10 times
averaging and τc, piezo = (2.85562± 0.00062)µs in the case of using the piezo to scan the frequency with
500 times averaging, respectively. Both results do not agree within their uncertainties. This is probably
caused by the low averaging in case of the measurement with the AOM in combination with the observed
mechanical instability of the built FPI24. This was validated by a measurement after improving the FPI’s
mechanical stability. Here, much higher decay times of at least 25µs were observed leading to calculated
mirror reflectivities that agree with the by the manufacturer stated ones by using equations (31), (32)
and the measured FSR. Therefore, after optimisation this measurement yields valid results.

The FSR measurement yields ∆νFSR = (393.9 ± 9.6)MHz and is in compliance with the result from
measuring the mirror spacing dm = (38.0± 0.1) cm directly and calculating with dm the FSR leading to
∆νFSR, ruler = (394.3± 1.0)MHz.

In addition, the results of both measurements exhibit only a weak dependence on temperature changes.
Therefore, it is not necessary to characterise the cavity for a set of temperatures or even for each mea-
surement, as originally planned.

Moreover, using the results of cavity ring-down and cavity FSR measurement leads to a finesse of
F = 7068 ± 174. This is far below the expected value of F = 62830 if considering the stated reflec-
tivities of the resonator mirrors [with equation (31)] and results from the low measured DT reduced by
the mechanical instabilities of the FPI itself25. Considering the DT after mechanical optimisation a finesse
of at least F = 61873 results.

3.3.2 Cavity length modulation measurement

Within this thesis, it did not function to measure linewidths with the cavity length modulation technique
due to high fluctuations of the cavity transmission fringe heights that is the value measured for a varied
scan speed to obtain the laser’s linewidth.
Here, the investigation of this problem by observing the transmitted intensity for different measurement
conditions yield the low mechanical stability of the FPI itself as the fundamental reason. Thereby, all
components of the experimental setup, except the FPI, could be excluded after another by using a second
laser, varying the scan speed of the piezo, in- and excluding the own setup with respect of the AOM
double-pass configuration in the path and checking the power and pointing stability in front of the FPI.
Finally, this result was verified by optimising the stability of both cavity mirror mounts and, then, ob-
serving the transmitted intensity resulting in resonances much more in compliance with theoretically
expected ones.

Indeed, the FPI’s estimated resolution before the optimisation of mechanical stability was already in the
order of 60 kHz. After optimisation, even a value of 7 kHz is estimated. Here, no uncertainties of the
measured magnitude of the fringe are included that mainly originate from the mechanical instability of
the built FPI. Nevertheless, the already achieved resolution is very promising. Therefore, it is worthwhile
to build up a much more stable FPI after this thesis. Then, it should be possible to measure linewidths
in the order of 100 kHz especially because there is principally no actively length stabilised FPI necessary
to apply the cavity length modulation technique.

In addition, the linewidth of the tested laser26 was measured with an already existing delayed self-
heterodyne interferometry setup. This measurement yields linewidths from ∆ν0,DSHI = (283± 21) kHz to
∆ν0,DSHI = (399± 21) kHz depending on the emission wavelength of the used laser.
Moreover, the elements determining the linewidth of the optical parametric oscillator process used in C-
WAVE were theoretically investigated and lead to results that are very in compliance with the measured
linewidths obtained by the delayed self-heterodyne interferometry measurement. Unfortunately, the exact

24Obviously, the uncertainties of these values are chosen too small, since they do not agree within their uncertainties.
Here, statistical uncertainties are included and influences of length drifts due to temperature changes are dropped because
it was shown that they are small. Not included is the mechanical instability of the FPI that is unquantifiable.

25The mirror reflectivity of R = 0.99995 stated by the manufacturer is a value that has to be fulfilled. Therefore, the
mirrors are built to have a theoretical reflectivity of R = 0.999971 corresponding to a theoretical finesse of F = 108330.

26Hübner C-WAVE #021
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linewidth of the OPO’s pumplaser is not known. Therefore, these results support the measured linewidths
but do not serve as a reference.
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4 Conclusion and outlook
The cavity characterisation experiments are working and yielding reasonable results. Therefore, it is pos-
sible to use these measurements to characterise cavities.

The linewidth measurement using the cavity length modulation technique could not be applied due to the
mechanical instability of the built Fabry-Pérot interferometer. After this thesis, a much more stable cavity
will be used to measure linewidths with this technique due to the promising results already achieved. Here,
it is planned to use a cavity as built in in C-WAVE, since it is verified that here no stability problems are
the case. This cavity will be wavelength dependently characterised by the cavity characterisation measure-
ments. Then, as soon as the linewidths with this cavity and the cavity length modulation technique are
successfully measured in the infrared region, the extension to the visible region will be done. Essentially,
for this realisation only the cavity mirrors and some other components like the AOM are to be exchanged.

Moreover, as soon as linewidths measured with the cavity length modulation technique are available in
the region from 1090 nm to 1280 nm, it is still possible to compare them with the results obtained by the
delayed self-heterodyne interferometry experiment, as originally intended.
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5 Appendix
5.1 Numerical calculation of the magnitude of the fringe
The correct numerically solving of equation (41) is of fundamental importance. Therefore, it is discussed
in more detail. The Magnitude of the fringe is given by:

MF (l) = Iout(l)
I0

= T 2
∫ ∞

0
dν 1
π

∆ν0
2

(ν − ν0)2 + (∆ν0
2 )2

·R2[l+δ(ν)]·

∣∣∣∣∣∣
∞∑

n=−[l+δ(ν)]

Rnexp
{
i2πνtr

v

c0
n2
}∣∣∣∣∣∣

2

. (94)

The parameter T (mirror transmittance), R (mirror reflectivity), tr (cavity round-trip time), ν0 (laser
frequency) are given by the experiment.
l is the time t normalised to the round-trip time tr:

l = t

tr
. (95)

Since the round-trip time tr = (2.539 ± 0.062) ns is small in comparison to the decay time τc =
(2.85562± 0.00065)µs, l is taken as an integer.

Moreover, δ(ν) is the dimensionless time difference between resonant instances for the frequencies ν and
ν0 [6]:

δ(ν) = −c0(ν − ν0)
2vν0

= − c0
2vν0

· ν + c0
2v , (96)

with the speed of light c0 and the mirror velocity27 v given by the experiment. Thereby, δ(ν) is taken as
an integer, too.

The sum is solved for n-values from −[l + δ(ν)] to nmax, where nmax is obtained from the condition:

Rnmax != αmin ≈ 10−6 . (97)

αmin was chosen by the condition, that the with equation (94) obtained MF -values vary on digits that
are not of importance any more.

Moreover, the integral is solved for frequencies in the interval from the laser linewidth ν0 minus several
linewidth to the laser linewidth plus the same amount of linewidths. Again, here it was tested how large
this interval has to be in order to obtain results only varying on digits that do not matter.

27The mirror velocity is in the order of a few µm
s .

67



5 APPENDIX

Abbreviations

Abbreviation Meaning
A Aperture

AOM Acousto-optic modulator
AOM-DPC AOM double-pass configuration
AOMC AOM controller
ASG AOM stop-signal generator
BCL Bi-convex lens
BD Beam dump
BS Beam splitter

CLMT Cavity length modulation technique
CRDM Cavity ring-down measurement
DSHI Delayed self-heterodyne interferometry
DT Decay time
ESA Electrical spectrum analyser
FSM Finite state machine
FSR Free spectral range

FWHM Full-width at half-maximum
HWP Half-wave plate
IBUF Input buffer
M Mirror
MM Mode-matching

OBUF Output buffer
OI Optical isolator

OPO Optical parametric oscillator
P Polariser

PBS Polarising beam splitter
PC Personal computer
PCL Plano-convex lens
PD Photo diode
PET Piezo electric transducer
PSD Power spectral density
QPM Quasi-phase-matching
QWP Quarter-wave plate
Scope Oscilloscope

SR-OPO Singly-resonant OPO
TM Tiltable mirror
VCO Voltage controlled oscillator

Table 1: Table of abbreviations.
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