3 March, 2021
Application note: Transient State Imaging or TRAST microscopy for measuring oxygen concentration in cancerous cells.
In the field of biology it is a general consensus that cancerous cells often use other metabolic pathways, than corresponding healthy cells, and thereby consume less oxygen. If it is possible to measure the oxygen levels of cells by fluorescence microscopy this could be exploited as a future tool in clinical cancer diagnosis. However, measuring oxygen concentration of live cells is not totally straight forward. Traditional fluorophores have too short excited state lifetimes (nanoseconds) to be significantly influenced by molecular oxygen collisions, typically taking place in the microsecond time range.
A new technique called Transient State Imaging (TRAST) is set to change the way oxygen concentration of cells is measured, by taking advantage of transitions to and from the dark lowest triplet state (T1) of fluorophores (1). T1 is a photo-induced, long-lived non-fluorescent state, found in essentially all fluorophore molecules. Combining fluorescence microsocpy with a modulated laser source, and systematically varying the modulation characteristcs, it is possible to extract kinetic information about the T1 state.
Read the full application note for all the details:
More resources
Explore our Publications for practical insights on how our customers are leveraging the power of our lasers in their projects.
Customer publications, Our publications
Application: Multiphoton microscopy
Product line: VALO
Wavelength: Femtosecond
A gentle approach to multiphoton microscopy
Imaging techniques based on multiple photoninteractions have become very useful tools in many biomedical research or clinical diagnosis applications as they provide high contrast imaging capabilities with reduced tissue damage while not necessarily needing artificially induced fluorescent dyes.
Read summary of article "A Gentle Approach to Mutiphoton..."
Customer publications
Application: Kerr effect spectroscopy
Product line: VALO
Wavelength: Femtosecond
Compact Sub-50 fs Lasers for Time-Domain Kerr-Effect Spectroscopy
In this white paper a compact, commercially available fiber‑based femtosecond laser displaying a 34 fs pulse duration is used to verify the capability of such laser sources for both optical Kerr effect (OKE) spectroscopy and Raman-induced Kerr effect spectroscopy (RIKES).
Customer publications
Application: Third Harmonic Generation (THG) Microscopy
Product line: VALO
Wavelength: 1050 nm, Femtosecond
New Technique Offers Dynamic Insights into Myelin Pathology
Researchers introduce Third Harmonic Generation (THG) Microscopy as a novel method to visualize myelin without the need for labels.